关闭

NYOJ 20 吝啬的国度 (DFS)

181人阅读 评论(0) 收藏 举报
分类:


吝啬的国度

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
描述
在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市连接起来。现在,Tom在第S号城市,他有张该国地图,他想知道如果自己要去参观第T号城市,必须经过的前一个城市是几号城市(假设你不走重复的路)。
输入
第一行输入一个整数M表示测试数据共有M(1<=M<=5)组
每组测试数据的第一行输入一个正整数N(1<=N<=100000)和一个正整数S(1<=S<=100000),N表示城市的总个数,S表示参观者所在城市的编号
随后的N-1行,每行有两个正整数a,b(1<=a,b<=N),表示第a号城市和第b号城市之间有一条路连通。
输出
每组测试数据输N个正整数,其中,第i个数表示从S走到i号城市,必须要经过的上一个城市的编号。(其中i=S时,请输出-1)
样例输入
1
10 1
1 9
1 8
8 10
10 3
8 6
1 2
10 4
9 5
3 7
样例输出
-1 1 10 10 9 8 3 1 1 8

分析:

简单的深搜,加边的时候要加入双向边。然后深搜每个点即可。

将无根树化为有根树,对每个节点进行遍历,记录从起点开始的父节点。

#include <iostream>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 100000 + 10;

int t, n, s, a, b;
int pre[maxn];
vector<int> v[maxn];

void DFS(int s)
{
    for (int i = 0; i < v[s].size(); i++){
        if (pre[v[s][i]])    //若存在父节点则继续遍历
            continue;
        pre[v[s][i]] = s;    //相连节点的父节点为s
        DFS(v[s][i]);     //继续深搜,把一条路上父节点全部找出
    }
}
int main()
{
    cin >> t;
    while (t--){
        memset(v, 0, sizeof(v));
        memset(pre, 0, sizeof(pre));
        cin >> n >> s;
        pre[s] = -1;     //起点没有父节点
        for (int i = 0; i < n - 1; i++){
            cin >> a >> b;
            v[a].push_back(b);    //a与b相连
            v[b].push_back(a);    //b与a也相连
        }
        DFS(s);     //起点开始深搜
        for (int i = 1; i <= n; i++)
            cout << pre[i] << " ";      //每个节点的父节点都保存在pre数组中,输出即可
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:212457次
    • 积分:5842
    • 等级:
    • 排名:第4385名
    • 原创:396篇
    • 转载:57篇
    • 译文:0篇
    • 评论:14条