关闭

小知识点汇总

标签: acm数学
278人阅读 评论(0) 收藏 举报
分类:

1 为什么一个数的各位数之和可以被3整除时,这个数就可以被3整除

【转自:http://www.cnblogs.com/burellow/archive/2011/06/03/2071964.html


设一个n位数number,从个位起每一位为a1 ... an

则number = a1 + a2 * 10 + a3 * 10^2 + ... + an * 10^n-1; (1)

 

先证必要性:

如果number的各位数之和是3的倍数,

则a1 + a2 + ... an = 3k (k为正整数); (2)

由(2)得a1 = 3k - (a2 + a3 + ... an); (3)

将(3)代入(1)得:

number = 3k + a2 * (10 - 1) + a3 * (10^2 - 1) + ... + an * (10^n-1 - 1); (4)

显然(4)式右端任意一项都可以被3整除,故number可被3整除。

且倍数为k + a2 * 3 + a3 * 3^2 + ... + an * 3^n-1。

 

再证充分性:

如果number可以被3整除,那么number = 3m (m为正整数); (5)

(5)结合(1)得a1 + a2 * 10 + a3 * 10^2 + ... + an * 10^n-1 = 3m; (6)

由(6)得a1 = 3m - (a2 * 10 + a3 * 10^2 + ... + an * 10^n-1); (7)

那么a1 + a2 + ... an = 3m + a2 * (1 - 10) + a3 * (1 - 10^2) + ... + an * (1 - 10^n-1); (8)

显然(8)式右端任意一项都可以被3整除,故number的各位数之和是3的倍数。

且倍数为m + a2 * (-3) + a3 * (-3^2) + ... + an * (-3^n-1)。


2 八种球盒问题

【转: http://blog.csdn.net/pennyliang/article/details/5452741

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:68859次
    • 积分:1923
    • 等级:
    • 排名:千里之外
    • 原创:181篇
    • 转载:2篇
    • 译文:0篇
    • 评论:5条
    最新评论
    Baidu statistics