NYOJ 36-最长公共子序列:动态规划

该博客介绍了如何使用动态规划解决最长公共子序列问题,通过建立二维数组进行递推计算,当两个字符串对应位置字符相等时,在前一状态基础上加1,否则取最大公共子序列的较大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击打开链接

最长公共子序列

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 3
描述
咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
输入
第一行给出一个整数N(0<N<100)表示待测数据组数
接下来每组数据两行,分别为待测的两组字符串。每个字符串长度不大于1000.
输出
每组测试数据输出一个整数,表示最长公共子序列长度。每组结果占一行。
样例输入
2
asdf
adfsd
123abc
abc123abc
样例输出
3
6

运用动态规划的思想解题,建立一个二维的数组,array[x][y],那么就表示第一个字符串的前x位和第二个字符串的前y位的最大公共子序列,那么可以得到递推是就是如果str1[x] == str2[y] 那么array[x][y] = array[x -1][y - 1] +1,如果不相等,则array[x][y] = max(array[x - 1][y], array[x][y - 1])

 
#include<stdio.h>
int array[1001][1001];
int main()
{
	
	int num , i , j;
	char str1[1001] , str2[1001];

	scanf("%d" , &num);
	getchar();
	while(num--)
	{
		gets(str1);
		gets(str2);
		for(i = 0 ; str1[i - 1] ; i++)
			array[i][0] = 0;
		for(j = 0 ; str2[j - 1] ; j++)
			array[0][j] = 0;
		for(i = 1 ; str1[i - 1]; i++)
		{
			for(j = 1 ; str2[j - 1]; j++)
			{
				if(str1[i - 1] == str2[j - 1])
					array[i][j] = array[i - 1][j - 1] + 1;
				else
				{
					if(array[i - 1][j] > array[i][j - 1])
						array[i][j] = array[i - 1][j];
					else
						array[i][j] = array[i][j - 1];
				}
//				printf("%d " , array[i][j]);
			}
//			printf("\n");
		}
		printf("%d\n" , array[i - 1][j - 1]);
		
	}
	return 0;
}        


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勇敢的炮灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值