【线性代数公开课MIT Linear Algebra】 第二十二课 特征分解与矩阵的幂

原创 2015年11月18日 21:18:02

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~

特征分解 A=SΛS1

S由特征向量组成,要求这些特征向量线性无关,这样S才可逆,首先:
这里写图片描述
现在我们知道
AS=SΛ
S1AS=Λ
A=SΛS1
这就是特征分解Eigen decomposition

矩阵的幂

Ax=λxA2x=λAx=λ2x
从特征分解角度看
A2=SΛS1SΛS1=SΛ2S1
Ak=SΛkS1
这就是特征分解Eigen decomposition的一大用处

可对角化diagonalizable

当矩阵A没有重复的特征值,矩阵A必有n个线性无关的特征向量,则称A可以对角化diagonalizable

如果存在重复的特征值,那么我们就需要做额外的检查,就是说上面的条件是充分非必要条件。
我们重点关注可对角化的情况,

一阶差分方程组

这里写图片描述
上面就是一阶差分方程的解,我们想要知道更精确的结果,把u0展开成特征向量的线性组合,则
这里写图片描述
那么
这里写图片描述

斐波拉契数列 Fibonacci number

对于斐波拉契数列:a0=0,a1=1,an=an1+an2
an=an1+an2这就像一个二阶微分方程,我们需要一些技巧把他化简为一阶微分方程:
这里写图片描述
不用想啦,直接特征分解
这里写图片描述
得到两个特征值,那么斐波拉契数列第100个数大约是多少?斐波拉契数列的增长率是怎么样的?
这里写图片描述
回顾之前的内容,λ1为1.618,λ2为-0.618,λ2随着幂的增加会越来越小,最终趋于0,即增长率主要受λ1控制,幂越大,就越接近。
对于微分方程,我们关注的是增长率,即最终到底是发散还是收敛,而这些性质都藏在特征值里面。

PS:另一位仁兄的笔记
http://blog.csdn.net/suqier1314520/article/details/14004579

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【线性代数公开课MIT Linear Algebra】 第四课 从矩阵消元到LU分解

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~矩阵的逆与转置 为什么逆矩阵要反过来?这就像是…你先把鞋子脱了再脱袜子,那么反过来不就是要先穿上袜子,再...
  • a352611
  • a352611
  • 2015年09月23日 22:52
  • 1109

【线性代数公开课MIT Linear Algebra】 第二十一课 特征值与特征向量

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~何为特征向量、特征值 AxAx就好比f(x),这是一种针对多维的操作,而我们关心的就是经过变换后方向不变...
  • a352611
  • a352611
  • 2015年11月16日 22:28
  • 484

【线性代数公开课MIT Linear Algebra】 第十七课 正交基和正交矩阵

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~标准正交基与正交矩阵标准正交向量组 orthonomal vectors 彼此正交orthogonal且模...
  • a352611
  • a352611
  • 2015年11月08日 17:01
  • 588

【线性代数公开课MIT Linear Algebra】 第一课 矩阵的行图像与列图像

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~1. 从方程组到矩阵 矩阵的诞生是为了用一种简洁的方式表达线性方程组 个人理解来说就是为了更好的描述和...
  • a352611
  • a352611
  • 2015年09月20日 21:01
  • 1948

【线性代数公开课MIT Linear Algebra】 第九课 向量与矩阵的桥梁

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~ 线性无关(independence) 对于一堆向量(向量组)v1,v2,v3...vnv_1,v_2,...
  • a352611
  • a352611
  • 2015年10月21日 23:17
  • 490

【线性代数公开课MIT Linear Algebra】 第五课 排列矩阵、转置、向量空间与列空间

排列矩阵 permutation matrix 排列矩阵指的是可以完成行互换的矩阵 这是上一课当中的内容,我们已经知道在LU分解中若pivot都不为0则我们无需进行行互换,当pivot存在0时,我...
  • a352611
  • a352611
  • 2015年09月24日 21:56
  • 900

【线性代数公开课MIT Linear Algebra】 第二课 矩阵与高斯消元

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~1. Gauss Elimination 高斯消元还是从线性方程组谈起,对于以下方程组: 对其求解,我...
  • a352611
  • a352611
  • 2015年09月20日 22:06
  • 1222

【线性代数公开课MIT Linear Algebra】 第十六课 Ax=b的解、最小二乘法与矩阵

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~ 基本子空间与投影矩阵 上一节课我们已经了解了投影矩阵 projection matrix, P=...
  • a352611
  • a352611
  • 2015年11月04日 22:14
  • 588

【线性代数公开课MIT Linear Algebra】 第十一课 矩阵空间和秩1矩阵

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~矩阵空间和之前学习的空间差不多,我们把矩阵当做向量,矩阵空间也是在空间内对一个矩阵进行加法或者scalar后...
  • a352611
  • a352611
  • 2015年10月26日 23:38
  • 418

【线性代数公开课MIT Linear Algebra】 第三课 矩阵乘法和矩阵的逆

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~1. 矩阵乘法对于矩阵A∗B=CA*B=C,从四个角度来看待这一问题 元素 Cij=∏Nk=1Aik∗Bk...
  • a352611
  • a352611
  • 2015年09月21日 23:07
  • 744
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【线性代数公开课MIT Linear Algebra】 第二十二课 特征分解与矩阵的幂
举报原因:
原因补充:

(最多只允许输入30个字)