【线性代数公开课MIT Linear Algebra】 第二十二课 特征分解与矩阵的幂

原创 2015年11月18日 21:18:02

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~

特征分解 A=SΛS1

S由特征向量组成,要求这些特征向量线性无关,这样S才可逆,首先:
这里写图片描述
现在我们知道
AS=SΛ
S1AS=Λ
A=SΛS1
这就是特征分解Eigen decomposition

矩阵的幂

Ax=λxA2x=λAx=λ2x
从特征分解角度看
A2=SΛS1SΛS1=SΛ2S1
Ak=SΛkS1
这就是特征分解Eigen decomposition的一大用处

可对角化diagonalizable

当矩阵A没有重复的特征值,矩阵A必有n个线性无关的特征向量,则称A可以对角化diagonalizable

如果存在重复的特征值,那么我们就需要做额外的检查,就是说上面的条件是充分非必要条件。
我们重点关注可对角化的情况,

一阶差分方程组

这里写图片描述
上面就是一阶差分方程的解,我们想要知道更精确的结果,把u0展开成特征向量的线性组合,则
这里写图片描述
那么
这里写图片描述

斐波拉契数列 Fibonacci number

对于斐波拉契数列:a0=0,a1=1,an=an1+an2
an=an1+an2这就像一个二阶微分方程,我们需要一些技巧把他化简为一阶微分方程:
这里写图片描述
不用想啦,直接特征分解
这里写图片描述
得到两个特征值,那么斐波拉契数列第100个数大约是多少?斐波拉契数列的增长率是怎么样的?
这里写图片描述
回顾之前的内容,λ1为1.618,λ2为-0.618,λ2随着幂的增加会越来越小,最终趋于0,即增长率主要受λ1控制,幂越大,就越接近。
对于微分方程,我们关注的是增长率,即最终到底是发散还是收敛,而这些性质都藏在特征值里面。

PS:另一位仁兄的笔记
http://blog.csdn.net/suqier1314520/article/details/14004579

版权声明:本文为博主原创文章,未经博主允许不得转载。

矩阵特征值分解与奇异值分解含义解析及应用

此文有一半转载自他出,主要在这进行个整理,具体内容文中都有相关的转载链接。特征值与特征向量的几何意义矩阵的乘法是什么,别只告诉我只是“前一个矩阵的行乘以后一个矩阵的列”,还会一点的可能还会说“前一个矩...
  • xiahouzuoxin
  • xiahouzuoxin
  • 2014年11月14日 14:28
  • 78012

矩阵特征值分解与奇异值分解含义解析及应用

此文有一半转载自他出,主要在这进行个整理,具体内容文中都有相关的转载链接。特征值与特征向量的几何意义矩阵的乘法是什么,别只告诉我只是“前一个矩阵的行乘以后一个矩阵的列”,还会一点的可能还会说“前一个矩...
  • xiahouzuoxin
  • xiahouzuoxin
  • 2014年11月14日 14:28
  • 78012

2.7 特征分解

声明:该文章翻译自MIT出版的《DEEP LEARNING》,博主会定期更新文章内容。由于博主能力有限,中间有过错之处希望大家给予批评指正,一起学习交流。许多数学对象分解为一些组成成分后可以更好的理解...
  • u010182633
  • u010182633
  • 2015年10月19日 15:21
  • 1911

【线性代数公开课MIT Linear Algebra】 第一课 矩阵的行图像与列图像

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~1. 从方程组到矩阵 矩阵的诞生是为了用一种简洁的方式表达线性方程组 个人理解来说就是为了更好的描述和...
  • a352611
  • a352611
  • 2015年09月20日 21:01
  • 2318

特征分解条件

特征分解条件
  • u012845311
  • u012845311
  • 2017年07月31日 18:21
  • 338

矩阵的特征值分解与奇异值分解的几何意义

1、首先,矩阵可以认为是一种线性变换:确定了定义域空间与目标空间的两组基,就可以很自然地得到该线性变换的矩阵表示。即矩阵A可以通过Ax=b将一个向量x线性变换到另一个向量b,这个过程中,线性变换的作用...
  • lipengcn
  • lipengcn
  • 2016年07月22日 15:02
  • 2163

Armadillo C++ linear algebra library 学习笔记(5)——矩阵的分解

1、矩阵的SVD分解A、通过调用”svd(X)”函数进行矩阵X的奇异值分解(svd)。 B、示例 //1、产生随机矩阵A,大小为5x5,每个数的范围为:(0,10) mat A = r...
  • jnulzl
  • jnulzl
  • 2015年07月09日 22:33
  • 1746

特征值分解、奇异值分解、PCA概念整理

本文将分别介绍特征值分解、奇异值分解、及PCA的相关理论概念。 文章末尾将给出Householder矩阵变换、QR算法求解特征值、特征向量的代码 其中,特征值分解、奇异值分解的相关内容,转载自: ht...
  • jinshengtao
  • jinshengtao
  • 2014年01月18日 14:21
  • 44761

PCA的本质----特征值分解

相信大家对PCA并不陌生,但是PCA的本质你是否了解呢?今天就给大家简单讲讲,也是自己对PCA的一个巩固。博客中使用的图片来自七月算法的程博士的PPT,在此感谢程博士课上的耐心讲解。      1、...
  • Sunshine_in_Moon
  • Sunshine_in_Moon
  • 2016年05月27日 15:11
  • 3749

线性代数之奇异值(SVD)分解

在线性代数中,SVD(Singular Value Decomposition)是对实数矩阵(甚至复数矩阵)的一种因式分解。在信号、统计、图像图形学中都有应用。 SVD非常强大且实用,因为数学界前辈...
  • u013063153
  • u013063153
  • 2017年01月05日 16:30
  • 736
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【线性代数公开课MIT Linear Algebra】 第二十二课 特征分解与矩阵的幂
举报原因:
原因补充:

(最多只允许输入30个字)