TinyOS论文02:Finding Symbolic Bug Patterns in Sensor Networks

原创 2015年11月21日 17:15:43

Abstract

  1. 论文提出了一种用于归纳和总结传感网bug的错误诊断算法。多个不同的事件模式由于具有相同的事件属性可能有相同的错误表现,例如:某些系统中,发送方和接收方如果超出2个范围的跳数的话就会出错。
  2. 特征模式提取技术用于识别和描述传感网的异常行为,用于归纳传感网节点或者信息交换的特征模式

一、Introduce

  1. bug特征模式:传感器网络中那些可能导致bug的实际可观测的消息交互以及结点、角色和信息类型的潜在关系称之为bug特征模式。
  2. 现有的一些传感网bug调试技术。。。,例如Dustminer使用频繁的序列挖掘技术用于识别交互的bug,论文表明,对基于绝对时间属性值的事件序列分析用户识别交互bug是不充分的。
  3. 论文采用特征模式的方法,通过不同事件属性间的关系来捕获导致bug的事件序列,即找出与bug高度相关、包含bug特征模式的关键的代码序列。

二、特征模式模型

  1. 特征模式的相关概念介绍:
    1、logged事件:在运行时执行的任何操作(例如:消息的传输、消息接收和写入写入闪存)
    2、logged事件的属性:例如消息传输事件的属性:senderId,senderType、destinationId、msgType
    3、logged事件在论文中的定义为:
< EventType,attribute 1 ,attribute 2 ,...attribute n > 

例如:单一的事件序列(有3个事件的单一序列):

< msgSent,senderId = 1,msgType = 0,destinationId = 3 >
< msgReceived,receiverId = 1,msgType = 1,senderId = 3 >
< flashWriteInitiated,nodeId = 1,dataSize = 100 >
  1. 高频序列挖掘算法用于提取事件的 高频子序列。(事件的子序列可以不用重复)
  2. 不同的模式的定义:有不同“支持”的事件子序列。“支持”指的是发生的次数。
  3. 相同特征模式举例:
    1、S1和S2的logged序列:
S1 =< msgSent,senderId = 1,msgType = 0 >
< msgReceived,receiverId = 2,msgType = 0 >
S2 =< msgSent,senderId = 3,msgType = 0 >
< msgReceived,receiverId = 5,msgType = 0 >

2、特征模式:

S2 =< msgSent,senderId = X,msgType = 0 >
< msgReceived,receiverId = neighbor(X),msgType = 0 >
  1. 特征模式提取的任务是:识别满足特关系的高频模式,这个特定关系由用户指定或者从有共同关系的库中选取,并且这些特定关系定义了相同或者不同类型的事件属性,例如邻接关系、识别关系和类型关系。
  2. 特征模式提取的步骤
    1、使用先验算法生成高频模式;
    2、归纳高频模式;
    3、最后提出了模式等级方案

三、Related Work

  1. 现有的工具对检测分布在多个结点间的bug不是很适用
  2. 现有的技术都不能自动找出特征模式。
  3. SNMS提供了一种更传统的传感网管理服务,它的做法是通过手机和总结不同类型的测试例如数据包丢失、无线通信能源消耗。但它不会像开发人员提示错误信息;也不会提示为什么出错。
  4. 使用机器学习技术去诊断错误也不是最新最好的方法。

四、Overview

1、调试采用特征模式的原因
具有普遍性而不是仅针对某些特定场合。
2、特征模式提取算法
特征模式提取的两个步骤:
1、多属性事件转换成但属性事件,一次来减少计算的复杂度。使用序列挖掘算法生成单一属性的事件高频模式,将这种高频模式集合成为基本的高频集合。
2、生成候选特征模式(候选特征模式生成的步骤)
例如:

//基本的高频模式
Seq a = (< E x ,attr 2 = v i >,< E y ,attr 2 = v j >,< E z ,attr 3 = v k >)
//候选特征模式
(< E x ,attr 1 = ∗ >,< E x ,attr 2 = v i >,< E x ,attr 3 = ∗ >)
(< E y ,attr 1 = ∗ >,< E y ,attr 2 = v j >)
(< E z ,attr 1 = ∗ >,< E z ,attr 2 = ∗ >,< E z ,attr 3 = v k >)

3、Challenges

  1. 识别有意义的条件
    找出有意义的特征模式关键: 用哪一个“*”属性的子集来替代特征 + 要测试的关系是什么
    1、避免无用的检测;
    2、提升自动化程度,为了减少人为干预,论文给出了专门适用于无线传感网络应用程序的与定义条件。
    3、列举出需要检测的基本条件
    4、在头文件中指定属性的类型;
    5、任意复杂度条件的组合能够自动生成。
    特征模式提取的伪代码:
Input: Set of Good Logs (GL), Set of Bad Logs(BL),similarity measure (δ)
Output: Set of discriminative symbolic pattern
1. PatternSetA=GenerateFrequentPatterns(GL)
2. SymbolicPatternSetA=ExtractSymbolicPattern(PatternSetA,GL,δ)
3. PatternSetB=GenerateFrequentPatterns(BL)
4. SymbolicPatternSetB=ExtractSymbolicPattern(PatternSetB,BL,δ)
5. DiscriminativePatternSet=DiffMine(SymbolicPatternSetA,SymbolicPatternSetB)
6. output DiscriminativePatternSet
Function: ExtractSymbolicPattern
Input: Set of Frequent Pattern(FP),Set of Logs(L),similarity measure (δ)
Output: Set of symbolic pattern(SP)
1. SP=Null;/ ∗ setofSymbolicpattern∗ /
2. for each pattern p in FP
    2.1 for each checkcondition c
        2.1.1 CSP=GenerateCandidateSymbolicPattern(p,c)
        2.1.2 if(support(CSP)/support(p)> δ then SP=SP U CSP
2. return SP

科研及文章指南

1 论文投稿及查询 做研究步骤:研究现状--目前存在问题----提出方案-----验证方案并比较--论文写作 论文写作思路:存在问题----解决思路(提出模型)----做了什么工作(提出算法)----...
  • WSN_IPv6
  • WSN_IPv6
  • 2016年05月20日 22:20
  • 1102

Squeeze-and-Excitation Networks论文翻译——中英文对照

Squeeze-and-Excitation Networks论文翻译——中英文对照
  • Quincuntial
  • Quincuntial
  • 2017年11月22日 16:51
  • 4399

Windows下TinyOS安装和测试步骤

第一步:安装 Java SE 6 Update 10 RC    1.下载JAVA JDK SE 6       http://www.java.net/download/jdk6/6u1...
  • QQ312619772
  • QQ312619772
  • 2014年07月30日 17:27
  • 648

iOS 开发过程中遇到的Bug和Warning收录(持续更新)

开发中一些奇葩的Bug收录,记录下坑爹的东西
  • Deft_MKJing
  • Deft_MKJing
  • 2016年06月15日 10:34
  • 6024

论文笔记| 几分钟看完ResNet的融合特性及冗余性分析的三篇文章

本文是博主在paper reading时的ppt,主要涉及三篇论文: 1. Residual Networks Behave Like Ensembles of Relatively Shallo...
  • bea_tree
  • bea_tree
  • 2017年02月15日 15:39
  • 1908

TinyOS操作系统介绍

TinyOS操作系统介绍        TinyOS操作系统是UC Berkeley(加州大学伯克利分校)开发的开源操作系统,专门为嵌入式无线传感器网络设计,该操作系统基于组件(Component-...
  • liuruiqun
  • liuruiqun
  • 2015年05月05日 16:15
  • 1665

TinyOS平台下一些代码的分析

本文主要研究了TinyOS的环境监测方法,以温湿度传感器为例加以修改,提供了四个具有普适性的输出接口,应用的网络结构是常见的树状网络。本文将以温湿度传感器为例从基层一步步地全面解析TinyOS树状网络...
  • pzh16789
  • pzh16789
  • 2017年05月11日 14:56
  • 471

一步步教你搭建TinyOS2.1.2开发环境

本教程使用的是VirtualBOX +ubuntu14.04+tinyos2.1.2 一步步教大家完成tinyos开发环境的搭建。...
  • a912293097
  • a912293097
  • 2014年07月07日 12:46
  • 4430

深度学习论文整理

================================================================================ 转载来源:http://hi.b...
  • u012435889
  • u012435889
  • 2017年03月07日 21:17
  • 337

论文阅读:Memory Networks

一、论文所解决的问题 实现长期记忆(大量的记忆),并且实现如何从长期记忆中读取和写入,此外还加入了推理功能 为什么长期记忆很重要:因为传统的RNN连复制任务都不行,LSTM估计也够玄乎。 在QA...
  • xizero00
  • xizero00
  • 2016年04月18日 19:11
  • 8160
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:TinyOS论文02:Finding Symbolic Bug Patterns in Sensor Networks
举报原因:
原因补充:

(最多只允许输入30个字)