iOS开发多线程篇—线程间的通信

一、简单说明

线程间通信:1个进程中,线程往往不是孤立存在的,多个线程之间需要经常进行通信

 

线程间通信的体现

1个线程传递数据给另1个线程

1个线程中执行完特定任务后,转到另1个线程继续执行任务

 

线程间通信常用方法

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg waitUntilDone:(BOOL)wait;

- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg waitUntilDone:(BOOL)wait;

 

线程间通信示例 – 图片下载

代码1:

复制代码
 1 //
 2 //  YYViewController.m
 3 //  06-NSThread04-线程间通信
 4 //
 5 //  Created by apple on 14-6-23.
 6 //  Copyright (c) 2014年 itcase. All rights reserved.
 7 //
 8 
 9 #import "YYViewController.h"
10 @interface YYViewController ()
11 @property (weak, nonatomic) IBOutlet UIImageView *iconView;
12 @end
13 
14 @implementation YYViewController
15 
16 - (void)viewDidLoad
17 {
18     [super viewDidLoad];
19 }
20 
21 -(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
22 {
23 
24 // 在子线程中调用download方法下载图片
25     [self performSelectorInBackground:@selector(download) withObject:nil];
26 }
27 
28  
29 
30 -(void)download
31 {
32     //1.根据URL下载图片
33     //从网络中下载图片
34     NSURL *urlstr=[NSURL URLWithString:@"fdsf"];
35 
36     //把图片转换为二进制的数据
37     NSData *data=[NSData dataWithContentsOfURL:urlstr];//这一行操作会比较耗时
38 
39     //把数据转换成图片
40     UIImage *image=[UIImage imageWithData:data];
41  
42     //2.回到主线程中设置图片
43     [self performSelectorOnMainThread:@selector(settingImage:) withObject:image waitUntilDone:NO];
44 }
45 
46  
47 
48 //设置显示图片
49 -(void)settingImage:(UIImage *)image
50 {
51     self.iconView.image=image;
52 }
53 
54 @end
复制代码

 

代码2

复制代码
 1 //
 2 //  YYViewController.m
 3 //  06-NSThread04-线程间通信
 4 //
 5 //  Created by apple on 14-6-23.
 6 //  Copyright (c) 2014年 itcase. All rights reserved.
 7 //
 8 
 9 #import "YYViewController.h"
10 #import <NSData.h>
11 
12 @interface YYViewController ()
13 @property (weak, nonatomic) IBOutlet UIImageView *iconView;
14 @end
15 
16 @implementation YYViewController
17 
18 - (void)viewDidLoad
19 {
20     [super viewDidLoad];
21 }
22 
23  
24 -(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
25 {
26 // 在子线程中调用download方法下载图片
27 
28     [self performSelectorInBackground:@selector(download) withObject:nil];
29 }
30 
31  
32 -(void)download
33 {
34 
35     //1.根据URL下载图片
36     //从网络中下载图片
37     NSURL *urlstr=[NSURL URLWithString:@"fdsf"];
38 
39     //把图片转换为二进制的数据
40     NSData *data=[NSData dataWithContentsOfURL:urlstr];//这一行操作会比较耗时
41 
42     //把数据转换成图片
43     UIImage *image=[UIImage imageWithData:data];
44 
45     //2.回到主线程中设置图片
46     //第一种方式
47 //    [self performSelectorOnMainThread:@selector(settingImage:) withObject:image waitUntilDone:NO];
48 
49     //第二种方式
50     //    [self.imageView performSelector:@selector(setImage:) onThread:[NSThread mainThread] withObject:image waitUntilDone:NO];
51 
52     //第三种方式
53    [self.iconView performSelectorOnMainThread:@selector(setImage:) withObject:image waitUntilDone:NO];
54 }
55 
56 
57 //设置显示图片
58 //-(void)settingImage:(UIImage *)image
59 //{
60 //    self.iconView.image=image;
61 //}
62 
63 @end
复制代码
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值