关闭

Python与机器学习之实战(二)

Python与机器学习之生成学习算法(实战) 项目介绍——垃圾邮件分类...
阅读(35) 评论(0)

Python与机器学习之数据可视化(四)

Matplotlib图像美化(例二) 在机器学习实际应用中,最关键的部分就是数据可视化,否则无论调试还是总结,你无从下手。...
阅读(29) 评论(0)

Python与机器学习之数据可视化(三)

装饰Matplotlib(标签、文本、标记、注释…) 在机器学习实际应用中,最关键的部分就是数据可视化,否则无论调试还是总结,你无从下手。python大牛们提供了非常牛逼的库—Matplotlib回顾...
阅读(25) 评论(0)

Python与机器学习之模型结构(生成学习算法二)

多项式事件模型(multinomial event model) :专为文本分类而生。(后验估计)...
阅读(46) 评论(0)

Python凸优化库cvxopt、cvxpy安装

pip install cvxopt、cvxpy会出现一大堆错误….. 网上查阅文档资料,要嘛不符合版本,要嘛需要一堆balabala的依赖。 如何解决???...
阅读(21) 评论(0)

Python字典排序

字典不能像列表那样排序,因为字典本身无序~(微笑) 环境:python3.5...
阅读(21) 评论(0)

Python与机器学习之模型结构(生成学习算法)

- 判别学习算法(discriminative learning algorithm):直接学习p(y|x)或者是从输入直接映射到输出的方法 - 生成学习算法(generative learning algorithm):对p(x|y)(也包括p(y))进行建模。...
阅读(35) 评论(0)

Python与机器学习之Numpy描述性统计(二)

Python与机器学习之相关性(实战一) 回顾上文(可戳)今天我们来实战。 项目介绍:分析两只股票的相关性。(大家都懂真正解决问题很难很难…...
阅读(43) 评论(0)

Python输出csv、excel表格

如何输出csv、xlxs表格? Python与机器学习之数据可视化(二) 在机器学习应用过程中,最重要的部分之一是数据可视化。换句话,如何说服别人或者自己?...
阅读(57) 评论(0)

Pycharm调用同级目录下的py脚本bug

Pycharm调用同级目录下的py脚本bug...
阅读(26) 评论(0)

Python数组提取某一列元素

Python数组如何提取某一列元素? 环境:Python3.5...
阅读(187) 评论(0)

Python与机器学习之Numpy描述性统计

Python与机器学习之相关性(一)在机器学习应用过程中,遇到复杂的机器学习系统,往往是一个人或者一个团队去研究优化某个部分。而Andrew Ng不止一次的提到,有些公司花六个月去解决一开始就错的问题(Eg. High variance but try more training examples),最后发现该部分根本不影响整体。如何避免?其中一种方法:先用简单的数据分析去描述问题,研究问题和特征的...
阅读(48) 评论(0)

Python与机器学习之常用的Numpy操作

在机器学习不断学习前进的道路上,发现numpy的强大,实际操作时甚至得不停地查阅numpy的资料。所以,再次总结更加实用的numpy。...
阅读(37) 评论(0)

Python与机器学习之优化算法

Python与机器学习之优化算法 回顾圣经,在监督学习中优化算法是关键的步骤——分析模型并得到最优模型,才是最终的目的。...
阅读(29) 评论(0)

Python与机器学习之模型结构(泊松分布)

Python与机器学习之模型结构(泊松分布) 回顾圣经其中有一个关键的步骤是定义模型结构,那么对模型有着深层次的把握则极为重要!...
阅读(66) 评论(0)
38条 共3页1 2 3 下一页 尾页
    个人资料
    • 访问:3018次
    • 积分:393
    • 等级:
    • 排名:千里之外
    • 原创:36篇
    • 转载:2篇
    • 译文:0篇
    • 评论:0条
    文章存档