Python与机器学习之数据可视化(三)

原创 2017年11月15日 11:06:55

装饰Matplotlib(标签、文本、标记、注释…)

在机器学习实际应用中,最关键的部分就是数据可视化,否则无论调试还是总结,你无从下手。python大牛们提供了非常牛逼的库—Matplotlib

回顾

详解图像组成

Figure

  1. 在matplotlib中,整个图像为Figure对象,理解为图像ID。
  2. Figure对象中包含多个Axes对象,理解为子图ID。

如图:
这里写图片描述

直线图详解Figure内部组件

title为图像标题,Axis为坐标轴, Label为坐标轴标注,Tick为刻度线,Tick Label为刻度注释。
如图:
这里写图片描述

各个对象关系从属

图像中所有对象均来自于Artist的基类。
如图:
这里写图片描述

用于美化的组件

Text and Annotations(可戳)

Show me the code

import matplotlib.pyplot as plt

plt.figure(1, figsize=(5, 5))
##ax子图ID
ax = plt.subplot(111)
plt.xticks(range(6))
# 如果不指定刻度,x轴与y轴都是1
plt.yticks(range(6))

##ANNOTATE
# xy箭头的位置
# xytext文本框的位置,size文本框的大小
# va,ha字体显示在文本框的位置
# 文本框边框bbox=dict(boxstyle=边框样式,fc=前景色)
# 箭头arrowprops=dict(arrowsyle=箭头样式,connectionstyle=连接路径arc3直接连,完全角度),rad代表箭头是否是弯的,+-定义弯的方向
ax.annotate(u"arrow", xy=(1, 1), \
            xytext=(4, 4), size=15, \
            va="center", ha="center", \
            bbox=dict(boxstyle='sawtooth', fc="w"), \
            arrowprops=dict(arrowstyle="-|>", connectionstyle="angle,rad=0.4", fc='r') \
            )

##TEXT
bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", lw=2)
ax.text(0, 0, "Direction", \
        ha="center", va="center", \
        rotation=45, size=15, \
        bbox=bbox_props
        )

##TABLE(不举例了...)
ax.table(cellText=None, cellColours=None,\
         cellLoc='right', colWidths=None,\
         rowLabels=None, rowColours=None, rowLoc='left',\
         colLabels=None, colColours=None, colLoc='center',\
         loc='bottom', bbox=None)

##ARROW
ax.arrow(x, y, dx, dy, **kwargs)

plt.show()

Show me the picture

如图:
这里写图片描述

总结

平时legend,annotate,text,label,title会多用一点~
接下来还会有一篇举例,两篇例子足够大家使用了

如果您看到这篇文章有收获或者有不同的意见,欢迎点赞或者评论。
python:190341254
丁。
版权声明:本文为博主原创文章,未经博主允许不得转载。

Python与机器学习之数据可视化

matplotlib超快速入门在机器学习实际应用中,最关键的部分之一就是数据可视化,否则无论是调试还是总结,很容易懵逼。 python提供了一个非常牛逼的库—matplotlibEnvironmen...
  • a5186050
  • a5186050
  • 2017年10月18日 15:21
  • 60

《机器学习Python实践》CH7 数据可视化

第二部分:数据理解 CH7 数据可视化 第二部分数据理解 CH7 数据可视化 1 单一图表 11 直方图 12 密度图 13 箱线图 2 多重图表 21 相关矩阵图 22 散点矩阵图 ...
  • qq_34100655
  • qq_34100655
  • 2018年01月09日 17:42
  • 29

【机器学习理论】第3部分 聚类分析

1、概述聚类分析可以应用到多个领域中,在生物学中,聚类可以辅助动植物分类的研究,可以通过对基因数据的聚类,找出功能相似的基因;在地理信息系统中,聚类可以找出具有相抵用途的区域,辅助石油开采;在商业上,...
  • kevinelstri
  • kevinelstri
  • 2016年12月24日 14:17
  • 1381

机器学习算法与Python实践之(三)支持向量机(SVM)进阶

机器学习算法与Python实践之(三)支持向量机(SVM)进阶zouxy09@qq.comhttp://blog.csdn.net/zouxy09        机器学习算法与Python实践这个系列...
  • zouxy09
  • zouxy09
  • 2013年12月12日 23:56
  • 35711

Python机器学习库sklearn里利用感知机进行三分类(多分类)的原理

感知机的理论参考http://blog.csdn.net/cymy001/article/details/77992416 from IPython.display import Im...
  • cymy001
  • cymy001
  • 2017年11月14日 19:35
  • 342

Python与机器学习之数据可视化(四)

Matplotlib图像美化(例二) 在机器学习实际应用中,最关键的部分就是数据可视化,否则无论调试还是总结,你无从下手。...
  • a5186050
  • a5186050
  • 2017年11月15日 16:34
  • 122

PYTHON数据可视化

介绍由于经常需要用Python进行数据数据分析,但经常碰到这样的情况:想做一个图,看看数据的趋势,但是以前记住的代码,在许久没有用后,一下载突然忘了如何去写。这篇cheatsheet是从Analyti...
  • u013393647
  • u013393647
  • 2015年08月20日 13:28
  • 1837

Python & 机器学习之项目实践

机器学习是一项经验技能,经验越多越好。在项目建立的过程中,实践是掌握机器学习的最佳手段。在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的。 预...
  • tansuo17
  • tansuo17
  • 2017年12月26日 15:31
  • 602

机器学习之深入理解神经网络理论基础、BP算法及其Python实现

人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好...
  • sinat_35512245
  • sinat_35512245
  • 2017年02月16日 09:25
  • 4062

机器学习笔记(三)矩阵和线性代数

特征向量、对称矩阵对角化、线性方程
  • IOThouzhuo
  • IOThouzhuo
  • 2016年03月09日 17:00
  • 2586
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Python与机器学习之数据可视化(三)
举报原因:
原因补充:

(最多只允许输入30个字)