读书笔记-数论

原创 2016年08月29日 14:49:47

离散数学之数论

翻了翻课本,看到数论一章有一个问题:20!的二进制表示从最低位数起有多少个连续的 0 。
课本上直接求 1到20的数 含有因子2的个数和,求出来是 18. 各种不理解,然后百度。看到了《编程之美》一书有同样的问题。
以下内容部分摘自: 大神的读书笔记

有两个问题,用到的方法类似

(1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0。
(2)求N!的二进制表示中最低位为1的位置。(这个的意思就是求出多少个连续的0 加一 就是位置)

主要分析第二个问题。当时很不理解 为什么要求7!的质因数分解后 2 的个数。
奇数的二进制表示末尾都是 1,奇数*奇数=奇数。我们可以这样想,1-7的奇数全部相乘,再乘偶数,每乘一个偶数,就会多k(取决质因子2的个数)个0 对 7! 进行质因数分解就可以了。
书上也用到了一个很巧妙的方法:

N!中含有质因数2的个数等于:[N/2]+[N/4]+[N/8]+…

自行理解~

数论读书笔记——因子分解法和费马数

因子分解法和费马数 费马因子分解 我们现在给出一个有趣但不总是有效的因子分解法,这个方法是费马发现的,被称为费马因子分解法。 引理:如果n是一个正的奇数,那么n分解为两个正整数的积和表示成两个平...

数论读书笔记——算数基本定理

欧几里得: 欧几里得算法: 定理1:整数a≥b>0,令r0=a,r1=b如果我们做带余除法得到rj=r(j+1)q(j+1)+r(j+2),且0<r(j+2)<r(j+1),j=0,1,2,…,n...

《数论概论》读书笔记 第6章 线性方程与最大公约数

这章讲的就是欧几里得算法和exgcdexgcd。 原式: ax+by=gcd(a,b)ax+by=gcd(a,b)(假设a≥ba≥b) 当 b=0b=0 时有 gcd(a,b)=agcd(a,b)...

《数论概论》读书笔记 (第四章) 高次幂之和与费马大定理

这章讲的东西就是费马大定理。很少的内容。在18和19世纪高斯和欧拉证明了指数为33的方程没有解,狄利克雷与勒让德证明了55次方程没有解。 n>=3n>=3时方程:an+bn=cna^n+b^n=c^...

《数论概论》读书笔记 第三章勾股数组与单位圆

本章讲的是勾股数组与单位圆的关系,讲关于勾股数的公式可以通过几何形式来推出。定理3.1:定理3.1: 圆x2+y2=1x^2+y^2=1上的坐标是有理数的点都可以由公式: (x,y)=(1−m21+m...

数论著作读书笔记(2013-04-14 23:22)

谈谈代数数论_代数数论百年历史回顾及分期初探_黎景辉 http://wenku.baidu.com/link?url=hawGPEHnHRm-mmVFy6a8_qOfXT08qe9Gd7CjZZ1w...

软件工程项目管理读书笔记

  • 2017年11月07日 20:18
  • 555KB
  • 下载

重构-改善既有代码的设计读书笔记(六)

重新组织函数6.6 Split Temporary Variable(分解临时变量)你的程序有某个临时变量被赋值超过一次,它既不是循环变量,也不拥有收集计算结果,针对每次赋值,创建一个独立、对应的临时...

算法导论 读书笔记

  • 2015年02月05日 16:13
  • 325KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:读书笔记-数论
举报原因:
原因补充:

(最多只允许输入30个字)