关闭

51nod 1242 斐波那契数列的第N项(矩阵快速幂)

357人阅读 评论(0) 收藏 举报
分类:

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
斐波那契数列的定义如下:

F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
Input示例
11
Output示例
89

菲薄纳妾数列(对我就是要这样写,不服你来打我啊),唉,我他喵的一看到这题就高潮了,直接一发公式,连题目的数据大小都没有看就直接交了,唉,简直蠢到家了,其实这题很简单,因为数据大小的限制所以必须要用矩阵快速幂,公式一发就水过去了。

如果对矩阵快速幂有不懂的可以看一下这位菊苣的文章,(来来来,日常膜菊苣~):http://blog.csdn.net/y990041769/article/details/22311889


搞懂以后就上代码吧~:

#include <cstdio>  
#include <iostream>  
#include <vector>   
using namespace std; 
typedef long long ll; 
typedef vector<long long> vec;  
typedef vector<vec> mat;    
const ll N = 1000000009;  
mat mul(mat a,mat b)  //矩阵乘法  
{  
    mat c(a.size(),vec(b[0].size()));  
    for(ll i=0;i<a.size();i++)  
    {  
        for(ll k=0;k<b.size();k++)  
        {  
            for(ll j=0;j<b[0].size();j++)  
                c[i][j] = ( c[i][j] + a[i][k] * b[k][j] ) % N;  
        }  
    }  
    return c;  
}  
  
mat solve_pow(mat a,ll n) //快速幂  
{  
    mat b(a.size(),vec(a.size()));  
    for(ll i=0;i<a.size();i++)  
        b[i][i]=1; 
    while(n>0)  
    {  
        if(n & 1)  
            b=mul(b,a);  
        a=mul(a,a);  
        n >>= 1;  
    }  
  
    return b;  
}  
ll n;  
void solve()  
{  
    mat a(2,vec(2));  
    while(~scanf("%lld",&n) && n!=-1)  
    {  
        a[0][0]=1,a[0][1]=1;  
        a[1][0]=1,a[1][1]=0;  
        a=solve_pow(a,n);  
        printf("%lld\n",a[1][0]);  
    }  
}  
int main()  
{  
    solve();  
    return 0;  
}  




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:3702次
    • 积分:216
    • 等级:
    • 排名:千里之外
    • 原创:19篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档