51nod 1242 斐波那契数列的第N项(矩阵快速幂)

原创 2016年08月30日 20:22:22

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
斐波那契数列的定义如下:

F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
Input示例
11
Output示例
89

菲薄纳妾数列(对我就是要这样写,不服你来打我啊),唉,我他喵的一看到这题就高潮了,直接一发公式,连题目的数据大小都没有看就直接交了,唉,简直蠢到家了,其实这题很简单,因为数据大小的限制所以必须要用矩阵快速幂,公式一发就水过去了。

如果对矩阵快速幂有不懂的可以看一下这位菊苣的文章,(来来来,日常膜菊苣~):http://blog.csdn.net/y990041769/article/details/22311889


搞懂以后就上代码吧~:

#include <cstdio>  
#include <iostream>  
#include <vector>   
using namespace std; 
typedef long long ll; 
typedef vector<long long> vec;  
typedef vector<vec> mat;    
const ll N = 1000000009;  
mat mul(mat a,mat b)  //矩阵乘法  
{  
    mat c(a.size(),vec(b[0].size()));  
    for(ll i=0;i<a.size();i++)  
    {  
        for(ll k=0;k<b.size();k++)  
        {  
            for(ll j=0;j<b[0].size();j++)  
                c[i][j] = ( c[i][j] + a[i][k] * b[k][j] ) % N;  
        }  
    }  
    return c;  
}  
  
mat solve_pow(mat a,ll n) //快速幂  
{  
    mat b(a.size(),vec(a.size()));  
    for(ll i=0;i<a.size();i++)  
        b[i][i]=1; 
    while(n>0)  
    {  
        if(n & 1)  
            b=mul(b,a);  
        a=mul(a,a);  
        n >>= 1;  
    }  
  
    return b;  
}  
ll n;  
void solve()  
{  
    mat a(2,vec(2));  
    while(~scanf("%lld",&n) && n!=-1)  
    {  
        a[0][0]=1,a[0][1]=1;  
        a[1][0]=1,a[1][1]=0;  
        a=solve_pow(a,n);  
        printf("%lld\n",a[1][0]);  
    }  
}  
int main()  
{  
    solve();  
    return 0;  
}  




51Nod 1242 斐波那契数列的第N项

题目链接:51Nod 1242 斐波那契数列的第N项斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= ...
  • Dextrad_ihacker
  • Dextrad_ihacker
  • 2016年03月16日 21:15
  • 1080

矩阵快速幂求斐波那契数列(初学整理)

参考文章:                  http://blog.csdn.net/u013795055/article/details/38599321                  htt...
  • NYIST_TC_LYQ
  • NYIST_TC_LYQ
  • 2016年10月31日 13:27
  • 6668

poj 3070 Fibonacci 【矩阵快速幂 求第N个斐波那契数%1000】

Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11123   Acc...
  • chenzhenyu123456
  • chenzhenyu123456
  • 2015年08月30日 20:01
  • 2192

51nod 1242 斐波那契数列的第N项(矩阵快速幂)

1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下...
  • yeguxin
  • yeguxin
  • 2015年08月27日 16:43
  • 927

【51NOD1242】斐波那契数列的第N项(矩阵快速幂)

题目链接 ps:只是记下模板。这题有个坑,用多组输入就TLE.//#pragma comment(linker, "/STACK:1024000000,1024000000") #include ...
  • oranges_c
  • oranges_c
  • 2016年12月27日 12:49
  • 181

【51Nod】1242 - 斐波那契数列的第N项(矩阵快速幂)

点击打开题目 1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 ...
  • wyg1997
  • wyg1997
  • 2016年08月18日 21:29
  • 230

矩阵乘法 与 矩阵快速幂详解 以51NOD1242 斐波那契数列的第N项为例

首先介绍矩阵乘法的本质: 小明今天要做饭,消耗2斤肉,1斤蔬菜。肉每斤20元,蔬菜每斤5元,则一共需多少花费? 这个问题的答案很简单: 我们用向量相乘的方法写出来: 如果小明第二天有另一种做饭的方...
  • FrankAx
  • FrankAx
  • 2017年08月08日 18:16
  • 220

nod51-1242斐波那契数列-矩阵快速幂

本文主要讲斐波那契数列结合矩阵快速幂求解的办法。 问题先看下面的问题: [ nod51-1242] 题目描述: 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 ...
  • Kang_TJU
  • Kang_TJU
  • 2016年09月11日 22:25
  • 171

51Nod-斐波那契数列的第N项(矩阵快速幂)

 1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那...
  • haut_ykc
  • haut_ykc
  • 2016年09月24日 17:06
  • 165

51nod1242 斐波那契数列的第N项

1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下: F(0) = 0 F(...
  • update7
  • update7
  • 2017年07月03日 15:52
  • 34183
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:51nod 1242 斐波那契数列的第N项(矩阵快速幂)
举报原因:
原因补充:

(最多只允许输入30个字)