51nod 1242 斐波那契数列的第N项(矩阵快速幂)

原创 2016年08月30日 20:22:22

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
斐波那契数列的定义如下:

F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
Input示例
11
Output示例
89

菲薄纳妾数列(对我就是要这样写,不服你来打我啊),唉,我他喵的一看到这题就高潮了,直接一发公式,连题目的数据大小都没有看就直接交了,唉,简直蠢到家了,其实这题很简单,因为数据大小的限制所以必须要用矩阵快速幂,公式一发就水过去了。

如果对矩阵快速幂有不懂的可以看一下这位菊苣的文章,(来来来,日常膜菊苣~):http://blog.csdn.net/y990041769/article/details/22311889


搞懂以后就上代码吧~:

#include <cstdio>  
#include <iostream>  
#include <vector>   
using namespace std; 
typedef long long ll; 
typedef vector<long long> vec;  
typedef vector<vec> mat;    
const ll N = 1000000009;  
mat mul(mat a,mat b)  //矩阵乘法  
{  
    mat c(a.size(),vec(b[0].size()));  
    for(ll i=0;i<a.size();i++)  
    {  
        for(ll k=0;k<b.size();k++)  
        {  
            for(ll j=0;j<b[0].size();j++)  
                c[i][j] = ( c[i][j] + a[i][k] * b[k][j] ) % N;  
        }  
    }  
    return c;  
}  
  
mat solve_pow(mat a,ll n) //快速幂  
{  
    mat b(a.size(),vec(a.size()));  
    for(ll i=0;i<a.size();i++)  
        b[i][i]=1; 
    while(n>0)  
    {  
        if(n & 1)  
            b=mul(b,a);  
        a=mul(a,a);  
        n >>= 1;  
    }  
  
    return b;  
}  
ll n;  
void solve()  
{  
    mat a(2,vec(2));  
    while(~scanf("%lld",&n) && n!=-1)  
    {  
        a[0][0]=1,a[0][1]=1;  
        a[1][0]=1,a[1][1]=0;  
        a=solve_pow(a,n);  
        printf("%lld\n",a[1][0]);  
    }  
}  
int main()  
{  
    solve();  
    return 0;  
}  




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDU-2017"百度之星"程序设计大赛-初赛(B)-1002-Factory

ACM模版描述题解其实,这个题的题解我是秒出的,当然,之所以没有写是因为这个秒出的题解也是被我秒掉了,我认识他会超时……始终是这样认为的……可是大概数据没有那么刁钻的极限情况,所以直接 LCA+暴力L...
  • f_zyj
  • f_zyj
  • 2017-08-14 16:52
  • 272

51Nod 1242 斐波那契数列的第N项

题目链接:51Nod 1242 斐波那契数列的第N项斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= ...

51nod1242【矩阵快速幂】

基础题。。 wa在n的范围需要用long long = =、涨个记性#include using namespace std; typedef long long LL;const LL mod...

51nod 1242 斐波那契数列的第N项(矩阵快速幂)

1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下...

斐波那契数列

ACM模版矩阵原理单独求解/* * 求斐波那契数列第N项,模MOD */ #define mod(a, m) ((a) % (m) + (m)) % (m)const int MOD = 1e9...
  • f_zyj
  • f_zyj
  • 2016-07-29 00:02
  • 655

51Nod-1242-斐波那契数列的第N项

ACM模版描述斐波那契数列的定义如下:F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)(1, 1, 2, 3, 5, 8, 13, 21,...
  • f_zyj
  • f_zyj
  • 2016-07-28 23:59
  • 399

快速幂取模及其应用

快速幂取模 用法:用于求解 a 的 b 次方,而b是一个非常大的数,用O(n)的复杂度会超时。那么就需要这个算法,注意它不但可以对数求次幂,而且矩阵等都可以。 假如求 x ^ n 次方 我...

51nod 1350 斐波那契表示

,我们简单列下前几组数据 x     1  2  3  4  5  6  7  8  9  10  11  12  13      ...

【51NOD1242】斐波那契数列的第N项(矩阵快速幂)

题目链接 ps:只是记下模板。这题有个坑,用多组输入就TLE.//#pragma comment(linker, "/STACK:1024000000,1024000000") #include ...

51Nod-斐波那契数列的第N项(矩阵快速幂)

 1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)