51nod 1212 无向图最小生成树(Kruskal算法)

原创 2016年08月30日 20:31:36

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。
Input
第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000)
第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
Output
输出最小生成树的所有边的权值之和。
Input示例
9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
Output示例
37

这是一道最小生成树的模板的题,用的是Kruskal算法,这没什么好说的,但是有一点我一定要说明一下

那就是最短路与最小生成树的区别,反正本校的新生经常问我这个问题,我刚学的时候也经常搞混23333


最短路与最小生成树的区别:

最短路是要求一点到另外的点的最短路径,只要最短的长度到达就好,除了出发点和终点外一概不管。如果不求一点到所有点的最短路,甚至可以不管所有点是否都联通。
最小生成树则要保证第一所有点都是联通的,不然就称不上是树了,而后保证树的边长度之和最小。

最后我们就上代码吧~:

#include<iostream>  
#include<cstring>  
#include<string>  
#include<cstdio>  
#include<algorithm>  
using namespace std;  
#define MAX 50005  
int father[MAX], son[MAX];  
int v, l;  
  
typedef struct Kruskal //存储边的信息  
{  
    int a;  
    int b;  
    int value;  
};  
  
bool cmp(const Kruskal & a, const Kruskal & b)  
{  
    return a.value < b.value;  
}  
  
int unionsearch(int x) //查找根结点+路径压缩  
{  
    return x == father[x] ? x : unionsearch(father[x]);  
}  
  
bool join(int x, int y) //合并  
{  
    int root1, root2;  
    root1 = unionsearch(x);  
    root2 = unionsearch(y);  
    if(root1 == root2) //为环  
        return false;  
    else if(son[root1] >= son[root2])  
        {  
            father[root2] = root1;  
            son[root1] += son[root2];  
        }  
        else  
        {  
            father[root1] = root2;  
            son[root2] += son[root1];  
        }  
    return true;  
}  
  
int main()  
{  
    int ncase, ltotal, sum, flag;  
    Kruskal edge[MAX];  
        scanf("%d%d", &v, &l);  
        ltotal = 0, sum = 0, flag = 0;  
        for(int i = 1; i <= v; ++i) //初始化  
        {  
            father[i] = i;  
            son[i] = 1;  
        }  
        for(int i = 1; i <= l ; ++i)  
        {  
            scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].value);  
        }  
        sort(edge + 1, edge + 1 + l, cmp); //按权值由小到大排序  
        for(int i = 1; i <= l; ++i)  
        {  
            if(join(edge[i].a, edge[i].b))  
            {  
                ltotal++; //边数加1  
                sum += edge[i].value; //记录权值之和  
                //cout<<edge[i].a<<"->"<<edge[i].b<<endl;  
            }  
            if(ltotal == v - 1) //最小生成树条件:边数=顶点数-1  
            {  
                flag = 1;  
                break;  
            }  
        }  
        if(flag) printf("%d\n", sum);  
        else printf("data error.\n");    
    return 0;  
}  



51nod 1212 无向图最小生成树(最小生成树)

1212 无向图最小生成树 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 N个点M条边的无向连通图,...
  • yeguxin
  • yeguxin
  • 2015年08月27日 19:19
  • 2258

图的实现、无向图的最小生成树、有向图的最短路径

graph.h #ifndef __GRAPH__ #define __GRAPH__ #include #include using namespace std; class Disjoin...
  • richrdbird
  • richrdbird
  • 2016年05月06日 23:08
  • 2850

Prim算法——求无向图的最小生成树

1212 无向图最小生成树 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 N个点M条边的无向连通图,...
  • qq_27717967
  • qq_27717967
  • 2015年12月27日 21:54
  • 638

有向图最小生成树——最小树形图(朱…

对于有向图的最小生成树 , 也叫做最小树形图 。 最小树形图的第一个算法是1965年朱永津和刘振宏提出的复杂度为O(VE)的算法。 值得我们骄傲啊 。 下面来分享这个算法 。 1、求最小树形图之前一定...
  • zengchenacmer
  • zengchenacmer
  • 2013年12月14日 20:03
  • 3021

无向图最小生成树、次小生成树,最短路模板

 最小生成树有两种模板,都比较简单。 prime算法: #include #include #define MAX 99999999 int g[110][110]; int n; in...
  • u011471397
  • u011471397
  • 2014年03月09日 10:47
  • 1550

无向连通网的最小生成树算法[第1部分]

摘要:求解图的最小生成树在工程管理、最优化规划等领域有广泛的应用,因此对最小生成树算法的研究具有重要的意义。本文针对图的最小生成树算法,首先对几种经典的最小生成树算法进行了总结,最后针对无向连通网的最...
  • u010480899
  • u010480899
  • 2017年03月11日 09:49
  • 997

无向图最小生成树(prim算法)

输入 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 
  • liangzhaoyang1
  • liangzhaoyang1
  • 2016年04月15日 12:47
  • 613

无向图基本算法 -- 遍历及最小生成树算法

1. 无向图图的表示 2. 无向图遍历算法 3. 最小生成树算法 4. 代码下载 1. 无向图表示 下面的代码中使用的无向图的表示方法和有向图中表示相同。如下:   2.无向图遍历算法 ...
  • happylife1527
  • happylife1527
  • 2012年08月25日 17:21
  • 1188

51nod1212 无向图最小生成树(Prim)

题目描述: N个点M条边的有向连通图,每条边有一个权值,求该图的最小生成树。 Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 ...
  • u012435889
  • u012435889
  • 2015年01月11日 21:17
  • 1154

【无浪】无向图论_最小生成树三种算法

Prim算法,Kruskal算法,Sollin算法
  • u013580497
  • u013580497
  • 2014年12月23日 00:32
  • 607
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:51nod 1212 无向图最小生成树(Kruskal算法)
举报原因:
原因补充:

(最多只允许输入30个字)