51nod 1212 无向图最小生成树(Kruskal算法)

原创 2016年08月30日 20:31:36

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。
Input
第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000)
第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
Output
输出最小生成树的所有边的权值之和。
Input示例
9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
Output示例
37

这是一道最小生成树的模板的题,用的是Kruskal算法,这没什么好说的,但是有一点我一定要说明一下

那就是最短路与最小生成树的区别,反正本校的新生经常问我这个问题,我刚学的时候也经常搞混23333


最短路与最小生成树的区别:

最短路是要求一点到另外的点的最短路径,只要最短的长度到达就好,除了出发点和终点外一概不管。如果不求一点到所有点的最短路,甚至可以不管所有点是否都联通。
最小生成树则要保证第一所有点都是联通的,不然就称不上是树了,而后保证树的边长度之和最小。

最后我们就上代码吧~:

#include<iostream>  
#include<cstring>  
#include<string>  
#include<cstdio>  
#include<algorithm>  
using namespace std;  
#define MAX 50005  
int father[MAX], son[MAX];  
int v, l;  
  
typedef struct Kruskal //存储边的信息  
{  
    int a;  
    int b;  
    int value;  
};  
  
bool cmp(const Kruskal & a, const Kruskal & b)  
{  
    return a.value < b.value;  
}  
  
int unionsearch(int x) //查找根结点+路径压缩  
{  
    return x == father[x] ? x : unionsearch(father[x]);  
}  
  
bool join(int x, int y) //合并  
{  
    int root1, root2;  
    root1 = unionsearch(x);  
    root2 = unionsearch(y);  
    if(root1 == root2) //为环  
        return false;  
    else if(son[root1] >= son[root2])  
        {  
            father[root2] = root1;  
            son[root1] += son[root2];  
        }  
        else  
        {  
            father[root1] = root2;  
            son[root2] += son[root1];  
        }  
    return true;  
}  
  
int main()  
{  
    int ncase, ltotal, sum, flag;  
    Kruskal edge[MAX];  
        scanf("%d%d", &v, &l);  
        ltotal = 0, sum = 0, flag = 0;  
        for(int i = 1; i <= v; ++i) //初始化  
        {  
            father[i] = i;  
            son[i] = 1;  
        }  
        for(int i = 1; i <= l ; ++i)  
        {  
            scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].value);  
        }  
        sort(edge + 1, edge + 1 + l, cmp); //按权值由小到大排序  
        for(int i = 1; i <= l; ++i)  
        {  
            if(join(edge[i].a, edge[i].b))  
            {  
                ltotal++; //边数加1  
                sum += edge[i].value; //记录权值之和  
                //cout<<edge[i].a<<"->"<<edge[i].b<<endl;  
            }  
            if(ltotal == v - 1) //最小生成树条件:边数=顶点数-1  
            {  
                flag = 1;  
                break;  
            }  
        }  
        if(flag) printf("%d\n", sum);  
        else printf("data error.\n");    
    return 0;  
}  



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

51Nod-1212-无向图最小生成树

ACM模版描述N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= ...
  • f_zyj
  • f_zyj
  • 2016-07-28 02:31
  • 214

51nod 1212 无向图最小生成树

N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。 Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000...

51Nod 1212 无向图最小生成树

1212 无向图最小生成树 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。 Input 第...

51nod:1212 无向图最小生成树

1212 无向图最小生成树 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 取消关注 N个点M条边的无向...

51nod1212 无向图最小生成树(Prim)

题目描述: N个点M条边的有向连通图,每条边有一个权值,求该图的最小生成树。 Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, ...

贪心算法基础之最小生成树 51nod Kruskal算法

问题: 有n个点,m条边。求该图的最小生成树。详细讲解见:http://blog.csdn.net/winter2121/article/details/71588403 ...

每日一省之————加权无向图的最小生成树算法(Prim/Kruskal算法)

1.带权重的边的数据结构 /** * 该类对象可以表示图中的一条边 * @author lhever 2017年2月19日 下午5:10:49 * @version v1.0 */ publi...
  • nmgrd
  • nmgrd
  • 2017-02-27 23:26
  • 478

最小生成树Kruskal算法

内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)