关闭

51nod 1212 无向图最小生成树(Kruskal算法)

223人阅读 评论(0) 收藏 举报
分类:

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。
Input
第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000)
第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
Output
输出最小生成树的所有边的权值之和。
Input示例
9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
Output示例
37

这是一道最小生成树的模板的题,用的是Kruskal算法,这没什么好说的,但是有一点我一定要说明一下

那就是最短路与最小生成树的区别,反正本校的新生经常问我这个问题,我刚学的时候也经常搞混23333


最短路与最小生成树的区别:

最短路是要求一点到另外的点的最短路径,只要最短的长度到达就好,除了出发点和终点外一概不管。如果不求一点到所有点的最短路,甚至可以不管所有点是否都联通。
最小生成树则要保证第一所有点都是联通的,不然就称不上是树了,而后保证树的边长度之和最小。

最后我们就上代码吧~:

#include<iostream>  
#include<cstring>  
#include<string>  
#include<cstdio>  
#include<algorithm>  
using namespace std;  
#define MAX 50005  
int father[MAX], son[MAX];  
int v, l;  
  
typedef struct Kruskal //存储边的信息  
{  
    int a;  
    int b;  
    int value;  
};  
  
bool cmp(const Kruskal & a, const Kruskal & b)  
{  
    return a.value < b.value;  
}  
  
int unionsearch(int x) //查找根结点+路径压缩  
{  
    return x == father[x] ? x : unionsearch(father[x]);  
}  
  
bool join(int x, int y) //合并  
{  
    int root1, root2;  
    root1 = unionsearch(x);  
    root2 = unionsearch(y);  
    if(root1 == root2) //为环  
        return false;  
    else if(son[root1] >= son[root2])  
        {  
            father[root2] = root1;  
            son[root1] += son[root2];  
        }  
        else  
        {  
            father[root1] = root2;  
            son[root2] += son[root1];  
        }  
    return true;  
}  
  
int main()  
{  
    int ncase, ltotal, sum, flag;  
    Kruskal edge[MAX];  
        scanf("%d%d", &v, &l);  
        ltotal = 0, sum = 0, flag = 0;  
        for(int i = 1; i <= v; ++i) //初始化  
        {  
            father[i] = i;  
            son[i] = 1;  
        }  
        for(int i = 1; i <= l ; ++i)  
        {  
            scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].value);  
        }  
        sort(edge + 1, edge + 1 + l, cmp); //按权值由小到大排序  
        for(int i = 1; i <= l; ++i)  
        {  
            if(join(edge[i].a, edge[i].b))  
            {  
                ltotal++; //边数加1  
                sum += edge[i].value; //记录权值之和  
                //cout<<edge[i].a<<"->"<<edge[i].b<<endl;  
            }  
            if(ltotal == v - 1) //最小生成树条件:边数=顶点数-1  
            {  
                flag = 1;  
                break;  
            }  
        }  
        if(flag) printf("%d\n", sum);  
        else printf("data error.\n");    
    return 0;  
}  



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:3772次
    • 积分:216
    • 等级:
    • 排名:千里之外
    • 原创:19篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档