51nod 1212 无向图最小生成树(Kruskal算法)

原创 2016年08月30日 20:31:36

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。
Input
第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000)
第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
Output
输出最小生成树的所有边的权值之和。
Input示例
9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
Output示例
37

这是一道最小生成树的模板的题,用的是Kruskal算法,这没什么好说的,但是有一点我一定要说明一下

那就是最短路与最小生成树的区别,反正本校的新生经常问我这个问题,我刚学的时候也经常搞混23333


最短路与最小生成树的区别:

最短路是要求一点到另外的点的最短路径,只要最短的长度到达就好,除了出发点和终点外一概不管。如果不求一点到所有点的最短路,甚至可以不管所有点是否都联通。
最小生成树则要保证第一所有点都是联通的,不然就称不上是树了,而后保证树的边长度之和最小。

最后我们就上代码吧~:

#include<iostream>  
#include<cstring>  
#include<string>  
#include<cstdio>  
#include<algorithm>  
using namespace std;  
#define MAX 50005  
int father[MAX], son[MAX];  
int v, l;  
  
typedef struct Kruskal //存储边的信息  
{  
    int a;  
    int b;  
    int value;  
};  
  
bool cmp(const Kruskal & a, const Kruskal & b)  
{  
    return a.value < b.value;  
}  
  
int unionsearch(int x) //查找根结点+路径压缩  
{  
    return x == father[x] ? x : unionsearch(father[x]);  
}  
  
bool join(int x, int y) //合并  
{  
    int root1, root2;  
    root1 = unionsearch(x);  
    root2 = unionsearch(y);  
    if(root1 == root2) //为环  
        return false;  
    else if(son[root1] >= son[root2])  
        {  
            father[root2] = root1;  
            son[root1] += son[root2];  
        }  
        else  
        {  
            father[root1] = root2;  
            son[root2] += son[root1];  
        }  
    return true;  
}  
  
int main()  
{  
    int ncase, ltotal, sum, flag;  
    Kruskal edge[MAX];  
        scanf("%d%d", &v, &l);  
        ltotal = 0, sum = 0, flag = 0;  
        for(int i = 1; i <= v; ++i) //初始化  
        {  
            father[i] = i;  
            son[i] = 1;  
        }  
        for(int i = 1; i <= l ; ++i)  
        {  
            scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].value);  
        }  
        sort(edge + 1, edge + 1 + l, cmp); //按权值由小到大排序  
        for(int i = 1; i <= l; ++i)  
        {  
            if(join(edge[i].a, edge[i].b))  
            {  
                ltotal++; //边数加1  
                sum += edge[i].value; //记录权值之和  
                //cout<<edge[i].a<<"->"<<edge[i].b<<endl;  
            }  
            if(ltotal == v - 1) //最小生成树条件:边数=顶点数-1  
            {  
                flag = 1;  
                break;  
            }  
        }  
        if(flag) printf("%d\n", sum);  
        else printf("data error.\n");    
    return 0;  
}  



最小生成树之Kruskal算法

给定一个无向图,如果它任意两个顶点都联通并且是一棵树,那么我们就称之为生成树(Spanning Tree)。如果是带权值的无向图,那么权值之和最小的生成树,我们就称之为最小生成树(MST, Minim...

zoj 1203求最小生成树的权值之和(kruskal算法实现)

这道zoj的题目,主要运用的是求最小生成树的知识,我用的是kruskal算法,当然,用取权值最小边的最小堆和查看是否有回路的并查集是自己实现的。但提交了几次都没成功,查了下,原来是自己的输出格式没有正...

Kruskal算法求最小生成树

求加权连通图的最小生成树的算法。kruskal算法总共选择n- 1条边,(共n条边)所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若...
  • a197p
  • a197p
  • 2015年05月27日 13:50
  • 829

(prim算法题型一)求最小生成树的权值和、路径、边值的最小和最大值。

1.输出最小生成树个边权值累加和 4 0 4 9 21 4 0 8 17 9 8 0 16 21 17 16 0 #include #include #define MaxInt 0x...

无向带权图的最小生成树算法——Prim及Kruskal算法思路

边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。    最小生成树(MST):权值最小的生成树。    生成树和最小生成树的应用:要连通n个城市需要n-1条...
  • lingzhm
  • lingzhm
  • 2015年03月30日 16:09
  • 3957

图论中最小生成树构造算法之Prim算法和Kruskal算法

图是 由顶点的有穷非空集合和点之间边的集合构成: G={V,E},V是顶点集合,E是顶点之间边的集合。根基顶点之间边有无方向性可分为:有向图和无向图: 在图中,当对边赋予有意义数值时候,成为网图。...

最小生成树——Kruskal算法(C语言版)

1,问题描述 设G=(V,E)是无向连通带权图,如果G的一个子图G’是一棵包含G的所有顶点的树,则称G’为G的生成树。生成树的各边权的总和称为该生成树的耗费,求在G的所有生成树中耗费最小的最小生成树...

最小生成树之kruskal算法

kruskal算法的精髓在于: 每次选取一条边。 该边同时满足:1、在当前未选边中权值最小;2、与已选边不构成回路。 直到选取n-1条表是算法结束。找到MST活判断不存在MST。   代码设...

克鲁斯卡尔(Kruskal)算法求最小生成树

1、基本思想:设无向连通网为G=(V, E),令G的最小生成树为T=(U, TE),其初态为U=V,TE={ },然后,按照边的权值由小到大的顺序,考察G的边集E中的各条边。若被考察的边的两个顶点属于...

51nod 1212 无向图最小生成树(最小生成树)

1212 无向图最小生成树 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 N个点M条边的无向连通图,...
  • yeguxin
  • yeguxin
  • 2015年08月27日 19:19
  • 1761
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:51nod 1212 无向图最小生成树(Kruskal算法)
举报原因:
原因补充:

(最多只允许输入30个字)