51nod 1183 编辑距离(二维dp)

原创 2016年08月30日 21:09:24

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k->s)
sittin (e->i)
sitting (->g)
所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
给出两个字符串a,b,求a和b的编辑距离。
Input
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
Output
输出a和b的编辑距离
Input示例
kitten
sitting
Output示例
3

这题还是挺实诚的恩,直接把算法写到题目上了2333333333,编辑距离问题的模板题,这就不多说了,想要了解编辑距离问题的可以膜一下这个菊苣的文章:http://blog.csdn.net/vsooda/article/details/8313172


然后不多说了,上代码吧~=ω=

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
char a[1005],b[1005];
int dp[1005][1005];
int main()
{
	int i,j,k,len1,len2;
	scanf("%s",a+1);
	scanf("%s",b+1);
	len1=strlen(a+1);
	len2=strlen(b+1);
	for(i=0;i<=len1;i++)
	{
		dp[i][0]=i;
	}
	for(j=0;j<=len2;j++)
	{
		dp[0][j]=j;
	}
	for(i=1;i<=len1;i++)
	{
		for(j=1;j<=len2;j++)
		{
			dp[i][j]=min(min(dp[i-1][j]+1,dp[i][j-1]+1),dp[i-1][j-1]+(a[i]==b[j]?0:1));
		}
	}
	printf("%d\n",dp[len1][len2]);
} 




51nod 1183编辑距离 经典dp

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除...

51Nod 1183 编辑距离(DP—编辑距离问题)

1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtein距离(也叫做Edit Dis...

51NOD 1183——编辑距离(动态规划基础)

1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtei...

51nod--1183 编辑距离(动态规划)

题目:1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),...
  • Aoxuets
  • Aoxuets
  • 2016年03月20日 00:08
  • 358

51nod1183 编辑距离

1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtei...

【51NOD】1183 编辑距离(最长公共子序列变形)

1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 编辑距离,又称Levenshtein距离(也叫做Edit Dist...

51nod 1183 编辑距离

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183. 题意不再赘述。 分析:对于两个字符串s和t,dp[i][j]记录...

【51Nod】1183 - 编辑距离(dp & 编辑距离)

点击打开题目 1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtein距离(...
  • wyg1997
  • wyg1997
  • 2016年08月09日 20:04
  • 157

51nod 1183 编辑距离

51nod 1183 编辑距离根据LCS的思路,做两字符串的比较。 f(i,j)表示A字符串在1–i,于B字符串在1–j时的最小改变量。 递推式: f(i,j) = min(f(i – 1, j...

51Nod 1183 编辑距离

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:51nod 1183 编辑距离(二维dp)
举报原因:
原因补充:

(最多只允许输入30个字)