摄像头

转载 2013年12月05日 11:55:16

摄像头的工作原理

摄像头主要有镜头、CCD图像传感器、预中放、AGC、A/D、同步信号发生器、CCD驱动器、图像信号形成电路、D/A转换电路和电源的电路构成。摄像头的主要图像传感部件是CCD(Charge Coupled Device),即电荷耦合器件,它具有灵敏度高、畸变小、寿命长、抗震动、抗磁场、体积小、无残影等特点,CCD是电耦合器件(Charge Couple Device)的简称,它能够将光线变为电荷并可将电荷储存及转移,也可将储存之电荷取出使电压发生变化,因此是理想的摄像元件,是代替摄像管传感器的新型器件。
    摄像头的工作原理是:被摄物体反射光线,传播到镜头,经镜头聚焦到CCD芯片上,CCD根据光的强弱积聚相应的电荷,经周期性放电,产生表示一幅幅画面的电信号,经过预中放电路放大、AGC自动增益控制,于由图像处理芯片处理的是数字信号,所以经模数转换到图像数字信号处理IC(DSP)。同步信号发生器主要产生同步时钟信号(由晶体振荡电路来完成),即产生垂直和水平的扫描驱动信号,到图像处理IC。然后,经数模转换电路通过输出端子输出一个标准的复合视频信号。这个标准的视频信号同家用的录像机、VCD机、家用摄像机的视频输出是一样的,所以也可以录像或接到电视机上观看。图像数字信号处理主是有SONIX(松翰)和VIMICRO(中星微)等。

图像传感器(SENSOR):是一种半导体芯片,其表面包含有几十万到几百万的光电二极管。光电二极管受到光照射时,就会产生电荷。目前市场上主流摄像头使用的感光元件主要是CCD和CMOS两种。它们的作用相当于传统相机中的底片。CCD的分辨率高,色彩还原逼真,已经成为百万像素级的数码摄影器材里的主角,但是其价格昂贵;与CCD相比,CMOS具有节能及成本低等特点。而且在百万像素内CMOS的感光效果完全可以和CCD媲美,因而摄像头几乎全都采用CMOS作为感光元件。目前市场上的摄像头产品采用的CMOS品牌较多,主要有MICRON,HYNIX, CISENSOR, TASC等等前四家的市场占有率接近100%。

CCD可分为线阵CCD、三线CCD、面阵CCD和交织传输CCD。摄像头采用是面阵CCD图像传感器。CCD芯片就像人的视网膜,是摄像头的核心。目前我国尚无能力制造,市场上大部分摄像头采用的是日本SONY、SHARP、松下、LG等公司生产的芯片,现在韩国也有能力生产,但质量就要稍逊一筹。因为芯片生产时产生不同等级,各厂家获得途径不同等原因,造成CCD采集效果也大不相同。在购买时,可以采取如下方法检测:接通电源,连接视频电缆到监视器,关闭镜头光圈,看图像全黑时是否有亮点,屏幕上雪花大不大,这些是检测CCD芯片最简单直接的方法,而且不需要其它专用仪器。然后可以打开光圈,看一个静物,如果是彩色摄像头,最好摄取一个色彩鲜艳的物体,查看监视器上的图像是否偏色,扭曲,色彩或灰度是否平滑。好的CCD可以很好的还原景物的色彩,使物体看起来清晰自然;而残次品的图像就会有偏色现象,即使面对一张白纸,图像也会显示蓝色或红色。个别CCD由于生产车间的灰尘,CCD靶面上会有杂质,在一般情况下,杂质不会影响图像,但在弱光或显微摄像时,细小的灰尘也会造成不良的后果。摄像头的分类如下:

1、依成像色彩划分 彩色摄像机:适用于景物细部辨别,如辨别衣着或景物的颜色。黑白摄像机:适用于光线不充足地区及夜间无法安装照明设备的地区,在仅监视景物的位置或移动时,可选用黑白摄像机。
   2、依分辨率灵敏度等划分 影像像素在38万以下的为一般型,其中尤以25万像素(512*492)、分辨率为400线的产品最普遍。 影像像素在38万以上的高分辨率型。
    3、按CCD靶面大小划分 CCD芯片已经开发出多种尺寸: 目前采用的芯片大多数为1/3"和1/4"。在购买摄像头时,特别是对摄像角度有比较严格要求的时候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。1英寸--靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。 2/3英寸--靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。 1/2英寸--靶面尺寸为宽6.4mm*高4.8mm,对角线8mm。 1/3英寸--靶面尺寸为宽4.8mm*高3.6mm,对角线6mm。 1/4英寸--靶面尺寸为宽3.2mm*高2.4mm,对角线4mm。 
    4、按扫描制式划分 PAL制。 NTSC制。 中国采用隔行扫描(PAL)制式(黑白为CCIR),标准为625行,50场,只有医疗或其它专业领域才用到一些非标准制式。另外,日本为NTSC制式,525行,60场(黑白为EIA)。 
   5、按照度划分,CCD又分为: 
       普通型 正常工作所需照度1~3LUX 
       月光型 正常工作所需照度0.1LUX左右 
       星光型 正常工作所需照度0.01LUX以下 
       红外型 采用红外灯照明,在没有光线的情况下也可以成像 
    6、按外观分:有机板型、针孔型、半球型。
       CCD彩色摄像头的主要技术指标 
       (1)CCD尺寸,亦即摄像机靶面。原多为1/2英寸,现在1/3英寸的已

普及化,1/4英寸和1/5英寸也已商品化。 
       (2)CCD像素,是CCD的主要性能指标,它决定了显示图像的清晰程度,

分辨率越高,图像细节的表现越好。CCD是由面阵感光元素组成,每一个元素称为像素,像素越多,图像越清晰。现在市场上大多以25万和38万像素为划界,38万像素以上者为高清晰度摄像机。 
    (3)水平分辨率。彩色摄像机的典型分辨率是在320到500电视线之间,主要有330线、380线、420线、460线、500线等不同档次。 分辨率是用电视线(简称线TV LINES)来表示的,彩色摄像头的分辨率在330~500线之间。分辨率与CCD和镜头有关,还与摄像头电路通道的频带宽度直接相关,通常规律是1MHz的频带宽度相当于清晰度为80线。 频带越宽,图像越清晰,线数值相对越大。
    (4)最小照度,也称为灵敏度。是CCD对环境光线的敏感程度,或者说是CCD正常成像时所需要的最暗光线。照度的单位是勒克斯(LUX),数值越小,表示需要的光线越少,摄像头也越灵敏。月光级和星光级等高增感度摄像机可工作在很暗条件,2~3lux属一般照度,现在也有低于1lux的普通摄像机问世。 
    (5)扫描制式。有PAL制和NTSC制之分。 
    (6)信噪比。典型值为46db,若为50db,则图像有少量噪声,但图像质量良好;若为60db,则图像质量优良,不出现噪声。 
    (7)视频输出。多为1Vp-p、75Ω。 
    (8)镜头安装方式。有C和CS方式,二者间不同之处在于感光距离不同。 
    (9)摄像头的像素:SXGA (1280 x1024)又称130万像素,XGA(1024 x768)又称80万像素,SVGA(800 x600)又称50万像素,VGA(640x480)又称30万像素(35万是指648X488),CIF(352x288) 又称10万像素,SIF/QVGA(320x240)。

相关文章推荐

FFmpeg+Qt实现摄像头(rtsp)实时显示

最近,由于项目需要实时显示摄像头的图像,就学习了FFmpeg的相关知识。其实,在之前利用VLC-QT库已经实现了摄像头的实时显示,但延迟时间太长(1.5秒),因此就转而学习了FFmpeg,最终的延迟时...

UVC分析——基于UVC的罗技摄像头C270 hack

现在,假如你的手上有一只摄像头,它是罗技高清网络摄像头webcam-C270,还有一块cortexA8开发板,这块开发板来自FriendlyARM,已经预装了linux系统,版本号是最新提供的linu...

OK210-uvc摄像头采集并显示在屏幕上(v4l2编程)

手头有一个UVC(usb video class)摄像头(也称为免驱摄像头),就顺便学习了一下V4L2编程 ,写代码的过程中参考了前辈的博客,觉得写的非常的好,特将链接贴在这里 http://www...

摄像头结构类型功能及未来的发展分析

一、 摄像头简介         摄像头(CAMERA)又称为电脑相机、电脑眼等,它作为一种视频输入设备,在过去被广泛的运用于视频会议、远程医疗及实时监控等方面。近年以来,随着互联网技术...

从摄像头中读取图像 OpenCV

从摄像头中读取图像

video4linux(v4l)使用摄像头的实例基础教程与体会

<!-- @page {margin:2cm} p {margin-bottom:0.21cm} h1 {margin-bottom:0.21cm} h1.western {f...

c# 控制摄像头

c# 控制摄像头

网络摄像头的角度与视野宽度

网络摄像头的角度与视野宽度 1.全景摄像头         全景。就呈现结果来看,全景摄像头是目前当之无愧的最佳摄像头,它的视野足够完整,给人一种空中鸟瞰大地的“上帝视角”。  虽然全景摄像头视野很好...

GStreamer资料整理(包括摄像头采集,视频保存,远程监控,流媒体RTP传输)

GStreamer资料整理(包括摄像头采集,视频保存,远程监控,流媒体RTP传输) 2010-12-26 20:08 313人阅读 评论(0) 收藏 举报   1,gstr...
  • dj0379
  • dj0379
  • 2011-11-02 07:21
  • 1579

Linux 下摄像头驱动支持情况

http://eatdrinkmanwoman.spaces.live.com/blog/cns!97719476F5BAEDA4!1336.entry http://weijb0606.blog....
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)