数据挖掘——航空公司客户价值分析(代码完整)

最近在阅读张良均、王路等人出版的书《python数据分析与挖掘实战》,其中有个案例是介绍航空公司客户价值的分析,其中用到的聚类方法是K-Means方法,我一直把学习的重心放在监督学习上,今天就用这个案例练习一下非监督学习。由于书上将这个案例介绍的比较详细,导致网上的好多博客都是直接将代码复制到博客上甚至是直接截图粘贴,还都说是自己原创, 真好笑。本文只是部分参考,不喜勿喷。

书中给出了关于62988个客户的基本信息和在观测窗口内的消费积分等相关信息,其中包含了会员卡号、入会时间、性别、年龄、会员卡级别、在观测窗口内的飞行公里数、飞行时间等44个特征属性。

为了便于观察数据,采用anaconda的notebook进行分析及可视化

首先导入分析中用到的各种第三方工具包

import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

接着将数据读取到程序中,并查看每个特征属性的相关信息,以便对“脏”数据进行处理

datafile = "air_data.csv"
data = pd.read_csv(datafile, encoding="utf-8")
print(data.shape)
print(data.info())

(62988, 44)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62988 entries, 0 to 62987
Data columns (total 44 columns):
MEMBER_NO                  62988 non-null int64
FFP_DATE                   62988 non-null object
FIRST_FLIGHT_DATE          62988 non-null object
GENDER                     62985 non-null object
FFP_TIER                   62988 non-null int64
WORK_CITY                  60719 non-null object
WORK_PROVINCE              59743 non-null object
WORK_COUNTRY               62962 non-null object
AGE                        62568 non-null float64
LOAD_TIME                  62988 non-null object
FLIGHT_COUNT               62988 non-null int64
BP_SUM                     62988 non-null int64
EP_SUM_YR_1                62988 non-null int64
EP_SUM_YR_2                62988 non-null int64
SUM_YR_1                   62437 non-null float64
SUM_YR_2                   62850 non-null float64
SEG_KM_SUM                 62988 non-null int64
WEIGHTED_SEG_KM            62988 non-null float64
LAST_FLIGHT_DATE           62988 non-null object
AVG_FLIGHT_COUNT           62988 non-null float64
AVG_BP_SUM                 62988 non-null float64
BEGIN_TO_FIRST             62988 non-null int64
LAST_TO_END                62988 non-null int64
AVG_INTERVAL               62988 non-null float64
MAX_INTERVAL               62988 non-null int64
ADD_POINTS_SUM_YR_1        62988 non-null int64
ADD_POINTS_SUM_YR_2        62988 non-null int64
EXCHANGE_COUNT             62988 non-null int64
avg_discount               62988 non-null float64
P1Y_Flight_Count           62988 non-null int64
L1Y_Flight_Count           62988 non-null int64
P1Y_BP_SUM                 62988 non-null int64
L1Y_BP_SUM                 62988 non-null int64
EP_SUM                     62988 non-null int64
ADD_Point_SUM              62988 non-null int64
Eli_Add_Point_Sum          62988 non-null int64
L1Y_ELi_Add_Points         62988 non-null int64
Points_Sum                 62988 non-null int64
L1Y_Points_Sum             62988 non-null int64
Ration_L1Y_Flight_Count    62988 non-null float64
Ration_P1Y_Flight_Count    62988 non-null float64
Ration_P1Y_BPS             62988 non-null float64
Ration_L1Y_BPS             62988 non-null float64
Point_NotFlight            62988 non-null int64
dtypes: float64(12), int64(24), object(8)
memory usage: 21.1+ MB
None

print(data[0:5])

   MEMBER_NO    FFP_DATE FIRST_FLIGHT_DATE GENDER  FFP_TIER    WORK_CITY  \
0      54993  2006/11/02        2008/12/24      男         6            .   
1      28065  2007/02/19        2007/08/03      男         6          NaN   
2      55106  2007/02/01        2007/08/30      男         6            .   
3      21189  2008/08/22        2008/08/23      男         5  Los Angeles   
4      39546  2009/04/10        2009/04/15      男         6           贵阳   

  WORK_PROVINCE WORK_COUNTRY   AGE   LOAD_TIME       ...         \
0            北京           CN  31.0  2014/03/31       ...          
1            北京           CN  42.0  2014/03/31       ...          
2            北京           CN  40.0  2014/03/31       ...          
3            CA           US  64.0  2014/03/31       ...          
4            贵州           CN  48.0  2014/03/31       ...          

   ADD_Point_SUM  Eli_Add_Point_Sum  L1Y_ELi_Add_Points  Points_Sum  \
0          39992             114452              111100      619760   
1          12000              53288               53288      415768   
2          15491              55202               51711      406361   
3              0              34890               34890      372204   
4          22704              64969               64969      338813   

   L1Y_Points_Sum  Ration_L1Y_Flight_Count  Ration_P1Y_Flight_Count  \
0          370211                 0.509524                 0.490476   
1          238410                 0.514286                 0.485714   
2          233798                 0.518519                 0.481481   
3          186100                 0.434783                 0.565217   
4          210365                 0.532895                 0.467105   

   Ration_P1Y_BPS Ration_L1Y_BPS  Point_NotFlight  
0        0.487221       0.512777               50  
1        0.489289       0.510708               33  
2        0.481467       0.518530               26  
3        0.551722       0.448275               12  
4        0.469054       0.530943               39  

[5 rows x 44 columns]

通过观测可知,数据集中存在票价为零但是飞行公里大于零的不合理值,但是所占比例较小,这里直接删去

data = data[data["SUM_YR_1"].notnull() & data["SUM_YR_2"].notnull()]
index1 = data["SUM_YR_1"] != 0
index2 = data["SUM_YR_2"] != 0
index3 = (data["SEG_KM_SUM"] == 0) & (data["avg_discount"] == 0)
data = data[index1 | index2| index3]
print(data.shape)
(62044, 44)

删除后剩余的样本值是62044个,可见异常样本的比例不足1.5%,因此不会对分析结果产生较大的影响。

原始数据集的特征属性太多,而且各属性不具有降维的特征,故这里选取几个对航空公司来说比较有价值的几个特征进行分析,这里并没有完全按照书中的做法选取特征,最终选取的特征是第一年总票价、第二年总票价、观测窗口总飞行公里数、飞行次数、平均乘机时间间隔、观察窗口内最大乘机间隔、入会时间、观测窗口的结束时间、平均折扣率这八个特征。下面说明这么选的理由:

  • 选取的特征是第一年总票价、第二年总票价、观测窗口总飞行公里数是要计算平均飞行每公里的票价,因为对于航空公司来说并不是票价越高,飞行公里数越长越能创造利润,相反而是那些近距离的高等舱的客户创造更大的利益。
  • 当然总飞行公里数、飞行次数也都是评价一个客户价值的重要的指标
  • 入会时间可以看出客户是不是老用户及忠诚度
  • 通过平均乘机时间间隔、观察窗口内最大乘机间隔可以判断客户的乘机频率是不是固定
  • 平均折扣率可以反映出客户给公里带来的利益,毕竟来说越是高价值的客户享用的折扣率越高

filter_data = data[[ "FFP_DATE", "LOAD_TIME", "FLIGHT_COUNT", "SUM_YR_1", "SUM_YR_2", "SEG_KM_SUM", "AVG_INTERVAL" , "MAX_INTERVAL", "avg_discount"]]
filter_data[0:5]
  FFP_DATE LOAD_TIME FLIGHT_COUNT SUM_YR_1 SUM_YR_2 SEG_KM_SUM AVG_INTERVAL MAX_INTERVAL avg_discount
0 2006/11/02 2014/03/31 210 239560.0 234188.0 580717 3.483254 18 0.961639
1 2007/02/19 2014/03/31 140 171483.0 167434.0 293678 5.194245 17 1.252314
2 2007/02/01 2014/03/31 135 163618.0 164982.0 283712 5.298507 18 1.254676
3 2008/08/22 2014/03/31 23 116350.0 125500.0 281336 27.863636 73 1.090870
4 2009/04/10 2014/03/31 152 124560.0 130702.0 309928 4.788079 47 0.970658

对特征进行变换:

data["LOAD_TIME"] = pd.to_datetime(data["LOAD_TIME"])
data["FFP_DATE"] = pd.to_datetime(data["FFP_DATE"])
data["入会时间"] = data["LOAD_TIME"] - data["FFP_DATE"]
data["平均每公里票价"] = (data["SUM_YR_1"] + data["SUM_YR_2"]) / data["SEG_KM_SUM"]
data["时间间隔差值"] = data["MAX_INTERVAL"] - data["AVG_INTERVAL"]
deal_data = data.rename(
    columns = {"FLIGHT_COUNT" : "飞行次数", "SEG_KM_SUM" : "总里程", "avg_discount" : "平均折扣率"},
    inplace = False
)
filter_data = deal_data[["入会时间", "飞行次数", "平均每公里票价", "总里程", "时间间隔差值", "平均折扣率"]]
print(filter_data[0:5])
filter_data['入会时间'] = filter_data['入会时间'].astype(np.int64)/(60*60*24*10**9)
print(filter_data[0:5])
print(filter_data.info())
       入会时间  飞行次数   平均每公里票价     总里程     时间间隔差值     平均折扣率
0  2706 days   210  0.815798  580717  14.516746  0.961639
1  2597 days   140  1.154043  293678  11.805755  1.252314
2  2615 days   135  1.158217  283712  12.701493  1.254676
3  2047 days    23  0.859648  281336  45.136364  1.090870
4  1816 days   152  0.823617  309928  42.211921  0.970658
     入会时间  飞行次数   平均每公里票价     总里程     时间间隔差值     平均折扣率
0   2706.0   210  0.815798  580717  14.516746  0.961639
1   2597.0   140  1.154043  293678  11.805755  1.252314
2   2615.0   135  1.158217  283712  12.701493  1.254676
3   2047.0    23  0.859648  281336  45.136364  1.090870
4   1816.0   152  0.823617  309928  42.211921  0.970658
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62988 entries, 0 to 62987
Data columns (total 6 columns):
入会时间       62988 non-null float64
飞行次数       62988 non-null int64
平均每公里票价    62299 non-null float64
总里程        62988 non-null int64
时间间隔差值     62988 non-null float64
平均折扣率      62988 non-null float64
dtypes: float64(4), int64(2)
memory usage: 2.9 MB
None
没找到更好的处理timedatle的方法,这里自己用笨方法找了一下规律,暂且这样处理吧。

由于不同的属性相差范围较大,这里进行标准化处理

filter_zscore_data = (filter_data - filter_data.mean(axis=0))/(filter_data.std(axis=0))
filter_zscore_data[0:5]

  入会时间 飞行次数 平均每公里票价 总里程 时间间隔差值 平均折扣率
0 1.441178 14.104488 0.609218 26.887901 -0.975255 1.294751
1 1.312523 9.122093 1.806504 13.193844 -1.006818 2.862354
2 1.333768 8.766208 1.821278 12.718386 -0.996389 2.875087
3 0.663343 0.794378 0.764434 12.605032 -0.618769 1.991687
4 0.390687 9.976218 0.636894 13.969099 -0.652816 1.343389
对于K-Means方法,k的取值是一个难点,因为是无监督的聚类分析问题,所以不寻在绝对正确的值,需要进行研究试探。这里采用计算SSE的方法,尝试找到最好的K数值。编写函数如下:

def distEclud(vecA, vecB):
    """
    计算两个向量的欧式距离的平方,并返回
    """
    return np.sum(np.power(vecA - vecB, 2))

def test_Kmeans_nclusters(data_train):
    """
    计算不同的k值时,SSE的大小变化
    """
    data_train = data_train.values
    nums=range(2,10)
    SSE = []
    for num in nums:
        sse = 0
        kmodel = KMeans(n_clusters=num, n_jobs=4)
        kmodel.fit(data_train)
        # 簇中心
        cluster_ceter_list = kmodel.cluster_centers_
        # 个样本属于的簇序号列表
        cluster_list = kmodel.labels_.tolist()
        for index in  range(len(data)):
            cluster_num = cluster_list[index]
            sse += distEclud(data_train[index, :], cluster_ceter_list[cluster_num])
        print("簇数是",num , "时; SSE是", sse)
        SSE.append(sse)
    return nums, SSE

nums, SSE = test_Kmeans_nclusters(filter_zscore_data)
簇数是 2 时; SSE是 296587.688611
簇数是 3 时; SSE是 245317.292202
簇数是 4 时; SSE是 209299.798194
簇数是 5 时; SSE是 183885.938906
簇数是 6 时; SSE是 167465.10385
簇数是 7 时; SSE是 151869.163041
簇数是 8 时; SSE是 142922.824005
簇数是 9 时; SSE是 135003.92238

#画图,通过观察SSE与k的取值尝试找出合适的k值
# 中文和负号的正常显示
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['font.size'] = 12.0
plt.rcParams['axes.unicode_minus'] = False
# 使用ggplot的绘图风格
plt.style.use('ggplot')
## 绘图观测SSE与簇个数的关系
fig=plt.figure(figsize=(10, 8))
ax=fig.add_subplot(1,1,1)
ax.plot(nums,SSE,marker="+")
ax.set_xlabel("n_clusters", fontsize=18)
ax.set_ylabel("SSE", fontsize=18)
fig.suptitle("KMeans", fontsize=20)
plt.show()

观察图像,并没有的所谓的“肘”点出现,是随k值的增大逐渐减小的,这里选取当k分别取4, 5, 6时进行,看能不能通过分析结果来反向选取更合适的值,k取值4时的代码如下

kmodel = KMeans(n_clusters=4, n_jobs=4)
kmodel.fit(filter_zscore_data)
# 简单打印结果
r1 = pd.Series(kmodel.labels_).value_counts() #统计各个类别的数目
r2 = pd.DataFrame(kmodel.cluster_centers_) #找出聚类中心
# 所有簇中心坐标值中最大值和最小值
max = r2.values.max()
min = r2.values.min()
r = pd.concat([r2, r1], axis = 1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目
r.columns = list(filter_zscore_data.columns) + [u'类别数目'] #重命名表头

# 绘图
fig=plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, polar=True)
center_num = r.values
feature = ["入会时间", "飞行次数", "平均每公里票价", "总里程", "时间间隔差值", "平均折扣率"]
N =len(feature)
for i, v in enumerate(center_num):
    # 设置雷达图的角度,用于平分切开一个圆面
    angles=np.linspace(0, 2*np.pi, N, endpoint=False)
    # 为了使雷达图一圈封闭起来,需要下面的步骤
    center = np.concatenate((v[:-1],[v[0]]))
    angles=np.concatenate((angles,[angles[0]]))
    # 绘制折线图
    ax.plot(angles, center, 'o-', linewidth=2, label = "第%d簇人群,%d人"% (i+1,v[-1]))
    # 填充颜色
    ax.fill(angles, center, alpha=0.25)
    # 添加每个特征的标签
    ax.set_thetagrids(angles * 180/np.pi, feature, fontsize=15)
    # 设置雷达图的范围
    ax.set_ylim(min-0.1, max+0.1)
    # 添加标题
    plt.title('客户群特征分析图', fontsize=20)
    # 添加网格线
    ax.grid(True)
    # 设置图例
    plt.legend(loc='upper right', bbox_to_anchor=(1.3,1.0),ncol=1,fancybox=True,shadow=True)
    
# 显示图形
plt.show()
绘图结果如下:


k取值5,6时的代码与上述类似,不再给出,直接给出结果图:

通过观察可知:

当k取值4时,每个人群包含的信息比较复杂,且特征不明显

当k取值5时,分析的结果比较合理,分出的五种类型人群都有自己的特点又不相互重复

当k取值6时,各种人群也都有自己的特点,但是第4簇人群完全在第5簇人群特征中包含了,有点冗余的意思

综上,当k取值为5时,得到最好的聚类效果,将所有的客户分成5个人群,再进一步分析可以得到以下结论:

  • 1.第一簇人群,10957人,最大的特点是时间间隔差值最大,分析可能是“季节型客户”,一年中在某个时间段需要多次乘坐飞机进行旅行,其他的时间则出行的不多,这类客户我们需要在保持的前提下,进行一定的发展;
  • 2.第二簇人群,14732人,最大的特点就是入会的时间较长,属于老客户按理说平均折扣率应该较高才对,但是观察窗口的平均折扣率较低,而且总里程和总次数都不高,分析可能是流失的客户,需要在争取一下,尽量让他们“回心转意”;
  • 3.第三簇人群,22188人,各方面的数据都是比较低的,属于一般或低价值用户
  • 4.第三簇人群,8724人,最大的特点就是平均每公里票价和平均折扣率都是最高的,应该是属于乘坐高等舱的商务人员,应该重点保持的对象,也是需要重点发展的对象,另外应该积极采取相关的优惠政策是他们的乘坐次数增加
  • 5.第五簇人群,5443人, 总里程和飞行次数都是最多的,而且平均每公里票价也较高,是重点保持对象
分析完毕,结果暗合市场的二八法则的,价值不大的第二三簇的客户数最多,而价值较大的第四五簇的人数较少。


  • 70
    点赞
  • 408
    收藏
    觉得还不错? 一键收藏
  • 32
    评论
基于数据挖掘航空公司客户价值分析主要包括以下步骤: 1. 数据抽取:抽取航空公司2012年4月1日至2014年3月31日的数据。 2. 数据探索分析(EDA):对抽取的数据进行探索分析,包括数据缺失值与异常值的探索分析、数据清洗、特征构建、标准化等操作。 3. 客户分群:基于RFM模型,使用K-means算法进行客户分群。 4. 客户价值分析:针对模型结果得到不同价值客户,采用不同的营销手段,提供定制化服务。 具体步骤如下: 1. 数据抽取:从航空公司2012年4月1日至2014年3月31日的数据中抽取所需数据,包括客户ID、飞行次数、飞行里程、平均折扣率、飞行时间间隔、总票价等信息。 2. 数据探索分析(EDA):对抽取的数据进行探索分析,包括数据缺失值与异常值的探索分析、数据清洗、特征构建、标准化等操作。其中,数据清洗包括去除重复值、填充缺失值、处理异常值等操作;特征构建包括构建RFM模型所需的三个特征:最近一次飞行时间间隔(Recency)、飞行频率(Frequency)和飞行里程(Monetary);标准化则是将数据转换为标准正态分布。 3. 客户分群:基于RFM模型,使用K-means算法进行客户分群。RFM模型是一种基于客户价值分析模型,其中R表示最近一次消费时间间隔,F表示消费频率,M表示消费金额。K-means算法是一种聚类算法,可以将客户分为不同的群体。 4. 客户价值分析:针对模型结果得到不同价值客户,采用不同的营销手段,提供定制化服务。例如,对于高价值客户,可以提供更高档次的服务,如VIP贵宾室、免费机票等;对于低价值客户,可以提供优惠券、积分兑换等服务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值