HDU 1159 Common Subsequence

本文介绍了一个使用动态规划解决字符串匹配问题的方法,具体是求解两个字符串之间的最长公共子串。通过构建状态转移矩阵并进行迭代计算,最终得出最长公共子串的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159

题目大意:给出两个字符串,求两个字符串的最长公共字串。

思路:慢慢重心开始有贪心转向动态规划了,这题就是简单的动态规划题。以题目的第一组测试数据为例。abcfbc abfcab。

辅助空间变化示意图


可以看出:

F[i][j]=F[i-1][j-1]+1;(a[i]==b[j])

F[i][j]=max(F[i-1][j],F[i][j-1])(a[i]!=b[j]);

n由于F(i,j)只和F(i-1,j-1), F(i-1,j)和F(i,j-1)有关, 而在计算F(i,j)时, 只要选择一个合适的顺序, 就可以保证这三项都已经计算出来了, 这样就可以计算出F(i,j). 这样一直推到f(len(a),len(b))就得到所要求的解了.
代码:

#include<stdio.h>
#include<string.h>
int f[1001][1001];//**1001*1001太大不能定义在主函数,否则直接停止编译**//
int main()
{
    char a[1001],b[1001];
    int i,j,len1,len2;
    while(~scanf("%s %s",a,b))
    {
        len1=strlen(a);
        len2=strlen(b);
        for(i=0;i<=len1;i++)
        {
            f[i][0]=0;
        }
        for(i=0;i<=len2;i++)
        {
            f[0][i]=0;
        }
        for(i=1;i<=len1;i++)
        {
            for(j=1;j<=len2;j++)
            {
                if(a[i-1]==b[j-1])
                {
                    f[i][j]=f[i-1][j-1]+1;
                }
                else
                {
                    f[i][j]=f[i-1][j]>f[i][j-1]?f[i-1][j]:f[i][j-1];
                }
            }
        }
        printf("%d\n",f[len1][len2]);
    }
    return 0;
}




### HDU 1159 最长公共子序列 (LCS) 解题思路 #### 动态规划状态定义 对于两个字符串 `X` 和 `Y`,长度分别为 `n` 和 `m`。设 `dp[i][j]` 表示 `X[0...i-1]` 和 `Y[0...j-1]` 的最长公共子序列的长度。 当比较到第 `i` 个字符和第 `j` 个字符时: - 如果 `X[i-1]==Y[j-1]`,那么这两个字符可以加入之前的 LCS 中,则有 `dp[i][j]=dp[i-1][j-1]+1`[^3]。 - 否则,如果 `X[i-1]!=Y[j-1]`,那么需要考虑两种情况中的最大值:即舍弃 `X[i-1]` 或者舍弃 `Y[j-1]`,因此取两者较大者作为新的 LCS 长度,即 `dp[i][j]=max(dp[i-1][j], dp[i][j-1])`。 时间复杂度为 O(n*m),其中 n 是第一个字符串的长度而 m 是第二个字符串的长度。 #### 实现代码 以下是 Python 版本的具体实现方式: ```python def lcs_length(X, Y): # 初始化二维数组用于存储中间结果 m = len(X) n = len(Y) # 创建(m+1)x(n+1)大小的表格来保存子问题的结果 dp = [[0]*(n+1) for _ in range(m+1)] # 填充表项 for i in range(1, m+1): for j in range(1, n+1): if X[i-1] == Y[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[m][n] # 测试数据输入部分可以根据具体题目调整 if __name__ == "__main__": while True: try: a = input().strip() b = input().strip() result = lcs_length(a,b) print(result) except EOFError: break ``` 此程序会读入多组测试案例直到遇到文件结束符(EOF)。每组案例由两行组成,分别代表要计算其 LCS 的两个字符串。最后输出的是它们之间最长公共子序列的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值