关闭

foefl 相关

标签: 工具存储j#c教育任务
459人阅读 评论(0) 收藏 举报

 

http://toefl.etest.net.cn/cn/    教育部考试中心托福网考网上报名

 

 

 

【备考】短期和长期的备考策略

最近我反思一下我自己,发现我荒废了很多备考时间。从上完暑假班回来到马上就要考试了,我浪费的时间太多太多。& ^" T4 T5 @+ Y6 O9 }! H) H2 i
我是8月19号节的课。8月20号回到自己的城市。11月11号考试。将近三个月的时间可以用来准备托福。因为我的实际情况,我可以一天拿出10个小时来准备托福0 T/ T1 x( x- o7 c
现在离考试还有半个月的时间了。就是在那么充足的时间的情况下,我没有好好准备,导致现在我心急如焚,因为还有很多缺陷
+ w4 Y9 I. w0 ]$ V- I8 t; x. g下面我想说一下我反思出的,对于短期和长期的备考策略。
9 s3 i; x# p: |6 N6 ]% D+ l% o& T, Q4 V& c0 ?
短期备考策略:
: H8 t% K- @: H5 c5 z像我这种情况,不到1个月就要考试的朋友,我觉得你应该先保住强项。比如在头几天里拿出大量时间来练习自己的强项。比如,我认为我的强项是听力写作,所以我会在3天之内保住我的听力写作,在这3天之内,我会做大量的练习,直到确保我很有自信的说我的听力写作能达到一个什么水平。当然,孤注一掷并不是盲目,在做这个的同时,可以穿插着进行口语阅读的练习,但是最大的比重还是给强项。等3天过去后,再把比重倒过来,主要攻克自己的弱项,但是一定要保证到时候真考得时候自己的强项不会出问题。虽然这种策略比较冒险,但是毕竟时间剩的不多,必须作出一些取舍。我认为经过很长时间的听写之后,大多数人的听力应该都不成问题,至于写作,应该是因人而异,因为毕竟老师不一样。我是凭借一套好的模板才对写作有信心。我的建议是挑出两个最好的作为强项,首先先保障这两门的分数,把这个分数为基数,再去攻克那两个相对较弱的部分。  t2 k7 /9 p9 o4 Y
$ i0 b) X- n9 T# |8 i- X8 I
长期备考策略:
  `! |+ V3 @+ v. C因为时间充裕,所以要先准备自己的弱项,而且定出计划,每天都要在自己的弱项上进步多少。我们追求的是明天都要比今天好,至于好的程度地多少,说得太多也不切实际,能好一点也是收获阿!等自己的弱项已经成为比较强的之后,再来巩固自己的强项,这样四个部分都是强项,虽然不是强到满分的地步(很少有人能强到这种地步),但是我觉得100分以上还是不成问题的。# U' i8 `. B* b) W/ T
# f3 N* x* p* L1 G
; }  H( {6 K0 {, A6 r8 l
但是策略归策略,每个人还要考虑自己的自身情况。别忘了,每天还是要听写,而且要对复习定出一个详细的计划来,而且必须强迫自己要提前完成,可以省下时间来复习更多的知识。
( r2 @& _. `4 b$ P, p  c我以我的实例告诉大家,大家千万不要荒废备考的时间,一定要抓紧,而且复习的时候一定要注重效率!不然的话就会像我一样着急。
, `9 ?! E; Q, n# P0 /6 d7 z/ p6 _& q8 N+ v7 Y! `! u1 y' I4 q
在此祝所有的托福弟子好运了!- Z, B. R2 J  }
 
 
 

听写方法及听写要求

听写方法:

(1)       听一句——动笔写(写不出来再听一遍,最多3-5遍)

(2)       weakness——回原文对照——划出关键词或weakness

(3)       听第二句(重复第一句过程)

   ……………………

(4)       听最后一句

5 全文统一听一边(抓关键词;寻找主干脉络;适当note-taking

 

听写要求:

1)请大家听写完再看文字答案

2)对照文字答案时,找出未能识别出来或者识别有误的地方并用记号标注出来

3)听写完的内容自己总结(不熟悉听觉的单词;关键词)

4)听写是一句一句的听,对于句子短的可以两三句合并,大家自己把握

5)最好只给自己三遍的机会来训练自己的听觉存储力

6)听写所推荐的软件请在论坛里下载

7)更有效的听写不推荐非要把每一篇文章听写完之后再对照文字答案,这样对于很长的文章来说,听觉模糊的或未识别/识别错的地方已经印象模糊,故不能更有效果的从听写中得到你的weakness

8)我会针对文章的长度进行切割,把文字答案切割成小的part以适合每次听写,按照跟贴的顺序完成大家的听写。比如:先听写第一楼;再第二楼;……以此类推

其他:

1)听相同的文章的提高是有局限性的。因为你在反复的过程里已经不再痛苦了,也就没有更多的进步了。

2)建议是:对于听写完的文章可以反复跟读。反复跟读同样的文章的收获会比每天跟读不同文章的收获巨大。

 

 

 

什么是听写?

问:什么是听写. i, n, O. x0 j$ A# f5 O) q

( S+ ~) @8 i/ |+ Y4 q/ b% j# F" a4 r# I
答:简单的讲:听写就是听一句写一句,对照文字找到自己没有识别出来的声音;同时在这个过程里训练自己的听觉存储力。! h& H# t7 /' l( N! r( ~

& B, U: {% W( P( ^3 W: |5 I5 Y( F0 d  P$ P$ Y: {
(1)       听写只是一个工具而已。每天都要使用这个工具来检查我们的耳朵到底有哪些漏洞,无论是对于单词只是熟悉形状不熟悉发音,还是我们不认识的单词,只要是我们耳朵陌生的声音,都可以使用这个工具检查出来。因为我们那多年学习英文靠眼睛,疏忽了耳朵作为一个识别工具去识别单词,这样一来,想理解句子是根本不可能的。所以,要从最简单的入手,首先让你的耳朵听出来的东西更多,才能提高理解的程度。记住,听写只是一个工具,不能敷衍了事,你在使用工具的过程中,到得到一些东西;千万别把听写当成一个任务,大家都听写,为什么有的人进步快,有的人进步慢?根本上就是你是否在使用听写这个工具的时候查漏了!( V8 ~* ~5 @$ V

7 Z/ z7 X" c+ H8 {
, P5 H5 g2 o2 H7 @1 y(2)       听写之后一定要做跟读。如果说听写是查漏的过程,看到自己的耳朵漏洞百出,你到底该为这些漏洞做点什么?如果不为漏洞做点什么的话,你早晚要为你的漏洞付出代价!所以:没有读过的听写不是完整的听写。我们说:先听写再跟读,语音语调耳朵熟。9 T: N& y3 }' E1 _/ L: ~9 z

) h. J9 e' p- e2 [
& m1 u, u& {5 m) z(3)       听一句写一句有利于提高大脑的存储力。识别出来声音了,要把识别出来的声音联系起来串成句子理解。存储时间短暂会让你来不及串起句子;存储空间有限让你根本耳朵识别出的声音不够组成句子!; t8 t* u6 f( a. }
: Q+ I, c: [) F9 w

4 a7 L) _2 r. h1 I  B! V( P! G! Y8 A  H, V/ a& k$ S
(4)       听写是耕一片冬僵了土地,边耕边抓到种子在手里,趁着土地翻开播种到里面;跟读是灌溉你的种子。发芽的时候就是你的耳朵对所以认识的单词的声音熟悉的时候。
0
0
查看评论

第一章 CPU构架概述

一、计算机系统结构概述 二、标量流水线技术 三、超标量构架 四、超长指令构架 五、处理器介绍
  • chyMX
  • chyMX
  • 2016-02-28 16:11
  • 378

通讯中的相关(自相关,互相关)定义及理解

在阅读一些有关协议方面的文章或论文的时候,经常看到相关(自相关,互相关)的术语.这些术语经常被用在同步信号的识别,接收信号与发射信号相似度评估等方面.因为在校的时候通讯课程几乎没有接触过,想到似乎线性代数中讲过类似相关的概念,但怎么也套不上,满脑狐疑.又看过几本通讯的书,也讲过类似的定义,但总觉得没...
  • zzsfqiuyigui
  • zzsfqiuyigui
  • 2012-06-30 08:00
  • 4704

【目标跟踪: 相关滤波器 四】相关滤波

相关滤波为本篇博文表述方便,特将前几篇中几个重要的公式在此一并贴出,不懂的可以去看前几篇博文。 w=(XTX+λI)−1XTy(1){\bf{w}} = {({{\bf{X}}^{\rm{T}}}{\bf{X}} + \lambda {\bf{I}})^{ - 1}}{{\bf{X}}^{\rm{...
  • Kena_M
  • Kena_M
  • 2017-01-02 21:53
  • 4038

硬件动态提高ILP

ILP与流水线的关系:ILP即指令级并行,两条或多条指令并行不悖,就要求他们之间不存在数据依赖,现代处理器中采用流水线技术,较高的ILP就能带来更多级的流水线阶段,流水线段数增加,那么CPI就会降低,整个系统的指令throughput变大。 所以ILP的提高很重要。 硬件动态
  • wlp600
  • wlp600
  • 2009-05-06 19:56
  • 713

相关向量机的MATLAB代码

相关向量机的MATLAB代码,经过验证是正确的,很实用 推荐相关向量机(Relevance vector machine,简称RVM)是Tipping在2001年在贝叶斯框架的基础上提出的,它有着与支持向量机(Support vector machine,简称SVM)一样的函数形式,与SVM一...
  • u012944912
  • u012944912
  • 2015-08-07 11:10
  • 1494

广义互相关求信号时延 JAVA实现

最近在做一个声音测量距离的
  • u012840636
  • u012840636
  • 2014-06-06 21:08
  • 1236

自相关函数的理解

作者:sky sailing 在学概率统计之前,我们学习的都是确定的函数。概率统计讨论了一次取值时获得的值是不确定的,而随机过程讨论了不确定会发生哪个时间函数。 每个小x(t)函数(样本函数)就是实际发生的一个表达式确定的函数,对每个小x(t)的处理,都是与之前确定函数的处理方法相同的,但是由于...
  • feng__shuai
  • feng__shuai
  • 2016-12-13 14:42
  • 13801

序列的自相关和互相关计算

-- Ref [1] [2] [3] ------------------------------------------------------------------------ 1.自相关和互相关概念 互相关(Cross-correlation) 对于连续函数,有如下定义: 对于离散函数,有...
  • u013655530
  • u013655530
  • 2015-08-03 15:57
  • 16989

信号处理:自相关和互相关

1. 首先说说自相关和互相关的概念。     这个是信号分析里的概念,他们分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x...
  • chenhuijie666
  • chenhuijie666
  • 2015-04-12 20:43
  • 4464

相关向量机(RVM)

【说明:这片篇博文为翻译伦敦大学学院一位老师写的资料,水平有限翻译不准确的地方请参见一下英文的文档。英文版的下载:链接】简介这篇文档主要是为了帮助刚入门机器学习的学生更好的理解Tipping的相关向量机(RVM:Relevance Vector Machines)。本文档假设读者具有一定的贝叶斯理论...
  • hjxzb
  • hjxzb
  • 2015-04-25 20:15
  • 2784
    个人资料
    • 访问:1591633次
    • 积分:25436
    • 等级:
    • 排名:第289名
    • 原创:638篇
    • 转载:550篇
    • 译文:2篇
    • 评论:257条