启发式搜索A * 算法

转载 2015年11月19日 21:44:08

开篇

这篇文章介绍找最短路径的一种算法,它的字我比较喜欢:启发式搜索。

标题上写的是翻译,只是觉得原文讲解的思路很清晰。这篇文章整体构思和原文相差不多,只是有些地方有小的改动,

我想的是用更容易理解的方式、更简洁的把A*算法的思想呈现出来。

文章中出现的词openlist,closelist我觉得用原文会更好故没有翻译,在文中会有解释。

原文地址http://www.gamedev.net/page/resources/_/technical/artificial-intelligence/a-pathfinding-for-beginners-r2003

各位也可以直接参考原文。

网上关于A*算法的文章还有很多,只是那些都需要有一定的基础,对于入门的好文章不多,而这篇文章就是为初学者而写的,很适合入门的一篇。文章定位:非专业性A*文章,很适合入门。

有图有真相,先给大家看个效果图吧:从图的左下角到右上角寻找最短路径,灰色部分是障碍物。

这是用一般的搜素方法,类似穷举的效果

下面的图是用A*搜素的效果,也就是本文要介绍的算法。

可以看出,用A*算法减少了许多计算量,它的效率有了显著的提高。

下面将为你解答上图中的算法是如何实现的。

图片来源:http://en.wikipedia.org/wiki/A*_search_algorithm

正文

搜索区域介绍

下图是这篇文章讨论的中心:

图中左边的绿色点是搜索的起点A,目标点是右边的红色点B,中间被障碍物挡住(蓝色部分)。

我们的目的是从起点出发,找到一条到达目标点的最短路径。

把整个图都分为一个个小方块只是为了这样方便讨论,更多的应用中,也可以把图分为其它方块的组合。

开始搜索

目标是找出从A点出发到B的最短路径,所以我们从A点开始搜索,直到找到目标B。

搜索的步骤是这样的:

1、从起点A开始把A加入到openlist中。openlist解释:它是一个队列,里面元素是一些方块,它们有可能构成最短路径。现在队列中只有元 素A,以后会加入更多的元素。以后会对里的元素进行检查,从里面来找到构成最短路径的元素。

2、看起点A周围的元素是否可达(是否能从A到达它们)把从A可到达的元素加入到openlist中,并且加入到openlist中的节点维护一个指指针,指向他的父亲,也即A点。如果A周围有障碍物就忽略它。从这个图看, A周围把个元素都可达,所以把它们都加到openlist中。

3、把起点A放入closelist中,在closelist中的点意味着以后不需要再去考虑它了。对于A节点,A可达的点都加入到了openlist中,以后也就不用考虑A的情况了。

经过以上三步操作后的效果图如下所示

图中被暗绿色包围的就是openlist中的点,一共八个,都是从起点A可达的点,并且他们中的每个都有一个指向他们父节点的指针(图中的小针方向)被高亮绿色包围的表示closelist中的点,可以看出起点A已经在closelist中。

路径选择

从起点出发 ,下一步可以走的点现在有八个,选取哪一个作为下一步的点呢?正常的思维是选取一个离目标值最进,且在这些点中离远点最近的点。

本文的思路也是这样的,文中用

F = G + H

表示,其中:

对于每个点,都有自己的G、H、F。

其中G表示从特定的点到起点的距离,H表示从该点到目标的估值,那么F就是经过该点路径的估值。

下面详细介绍

G:从起点到特定节点的距离,也就是G的父节点加上从G的父节点到起点A的距离g。图中是边长为10的正方形块,所以就是G的父节点的值g

加上10(上下左右相邻)或者加上14(斜块相邻、也就是对角线的长度,本来是14.14、、为了方便计算这里取近似值)

H:H能用很多方法得到估计值.这里用到的方法称为Manhattan method,H的值就是从考虑的点通过水平和垂直移动达到目标点的移动步数乘10(正方形块的边长为10).注意只是水平和垂直移动,不走斜线。并且忽略图中的障碍物。

插一句:

看了对H的描述,你可能会怀疑这种估计的精确性,有一点是可以肯定的:估计值越接近真实值,算法就能更块的找出最短路径。我们用的这种方法确实是做了估计,只是这种估计准确性不高,就是说只是粗略的估计,因为这种方法容易理解,所以才采用这种方法。可以想到,太过接近的估值最后不一定能得到想要的结果。关于估值函数想了解更多请参见:http://www.policyalmanac.org/games/heuristics.htm

为了从openlist中选取一个点继续搜索,就要计算出openlist中的每个点的F、H、G的值然后选取F小的一个点,进行下一步的探索。

对于上图中的点,他们的F、G、H的值在图中都有标明。

F、H、G的位置在起点右边的点中已经有标注,其他点的位置同理。

现在看起点右边的点(也就是标有字母的点)G=10,因为在起点正左边。H=30,水平移动三个格子可以到目标点B。F=G+H=40

继续搜索

由于我们的目的是找最短路径 ,下一步就从openlist中选取F最小的点做进一步的搜索,按如下步骤进行:

(为了方便描述,把选取的点成为点M)

1、检查M周围的点,在closelist中则忽略它,如果可达且不在openlist中,则加入openlist中,同理的维护一个指向父节点的指正,同时计算加入点的F H G 值。

2、如果M周围的点在openlist中,则看从起点A通过M到这类点的路径是不是小于他们的G值,如果是则更新他们的G、F值(更新为小的)。如果不是则不做任何操作。

3、把M从openlist中移除,加入closelist中。

对openlist中F最小的点(也就是起点左边的点)的处理效果如下图所示:

M的右边、右上、右下是障碍物,所以忽略他们。M的左边点在closelist中,也不去管他,剩下的是M的上、下、左上、左下的点。他们已经在openlist中,所以看从起点通过M到他们的距离是不是小于他们的G值。通过判断,都比他们的G值大,所以做任何操作。

可以看出,现在的closelist已有两个元素了(高亮绿色包围的块)

下一步的操作和上面叙述的一样,从openlist中找出F最小的,重复上的操作。从图中可以看出,现在的openlist中F最小的有两个,就是刚刚考虑的点的正上方和正下方,其实这里选哪个都无所谓,只是人们习惯于选择较晚加入到openlist中的元素,这里选择下方的点。

同理,处理效果如下图所示:

下面简单的说下处理过程:

暂且称现在处理的点为N吧。

N上方  在closelist中,不考虑。

N左方 在openlist中,看从原点通过N到它的距离为14+10大于10,不做操作,跳到下一步

N的左下方,下方 加入openlist中,同时记录F、G 、H的值还有指向父节点的指针。

N的右下方这里看做“不可达的点”原因是这两个点都处于障碍物的对角上,当然这只是一种人为的规定。也可以取消这条规定就把它加入到openlist中。这只是一种规定,不必深究。

处理的结果是closelist中现在有三个元素,用高亮的蓝色标记,同样的,openlist中的元素用暗绿色标记出。

 

重复上的步骤,每次从openlist中选取F最小的点加入closelist中,同时处理这个点周围的元素。。

直到目标节点也被加入到closelist中停止。

处理的效果如下图所示:

如果用心看、你也许已经发现了,在起点正下方两个点的G值,没错,就是图中用椭圆圈起来的点,之前的G=28,现在是20。这是在算法进行的时候更新的,可能 是这其中的某一步,处理这个点的时候,发现了一条更短的路径20,替换了原来的28。

到这里,问题已经基本解决了,最后的任务就是得到这条路径。

只要从目标点出发,沿着他们的父节点遍历,直到起点。就得到了一条最短路径。

如下图所示

总结

 现在你应该对A*算法有一个初步的认识了吧,总结下算法的实现过程:

1、把起点加入到openlist中

2、重复以下步骤

  a、从openlist中找出F最小的节点,并把它当做当前的操作节点

  b、检查当前点周围的点,如果已经在openlist中看是否能通过当前点得到更小的G,如果能就更新那个点的G,F的值,如果在closelist中或者是障碍物(不可达)则忽略他们

  c、把当前点从openlist中移除 ,加入closelist中

  d、当目标点加入closelist中时停止

3、保存路径,从目标点出发,按照父节点指针遍历,直到找到起点。

后记

 其实启发式搜索就是对穷举的一种优化,让每次搜索都更接近目标。这就要通过估值函数实现,对于这类问题,找到一个估值函数是关键。

估值函数:从当前点出发到目标点的花费。其实从这个理念上说,好像和分支界限法有些类似,都是在穷举的基础上对搜素优化。

 

 

如有转载请注明出处:

http://www.cnblogs.com/yanlingyin/

一条鱼~

尹雁铃@博客园

八数码问题-启发式搜索(A*算法)

八数码问题是这样一个问题。有一个3x3大小的棋盘,上面放着标记有1~8八个数字的方形棋子,剩下一个区域为空。 每一次只能移动一个棋子到相邻的空区域上,8个棋子都移动到如下图所示的位置时,就结束了。...
  • qq_32400847
  • qq_32400847
  • 2016年07月03日 22:40
  • 3878

对于A*算法的学习(启发式搜索)

转自http://www.cnblogs.com/yanlingyin/,一篇
  • u012837895
  • u012837895
  • 2014年05月11日 14:16
  • 1520

启发式搜索 - 有趣而神奇的 A* 算法

前言在课堂上听老师讲了一个人工智能的基础小算法,感觉神奇而有趣,便自行研究一下。研究了几个小时,总算实现了。想写一篇博文来记录一下今天的学习经历,那么,就请有兴趣的各位跟我一起从零实现一个简单的A星寻...
  • Goo_x
  • Goo_x
  • 2016年11月26日 20:22
  • 479

启发式搜索算法(A*算法)

A算发:在bfs算法中,若对每个状态n都设定估价函数f(n)=g(n)+h(n),并且每次从开启列表中选节点 进行扩展时,都选取f值最小的节点,则该搜索算法为启发式搜索算法,又称A算法。 g(n)...
  • xiaosshhaa
  • xiaosshhaa
  • 2017年01月10日 20:56
  • 968

A*启发式搜索算法详解 人工智能

A*启发式搜索算法详解 人工智能 转自:http://dev.gameres.com/Program/Abstract/Arithmetic/AmitAStar.mht 我们尝试解决的问题是把一个游戏...
  • sxy_cnyali
  • sxy_cnyali
  • 2016年02月01日 01:46
  • 2969

【启发式搜索】A*与IDA*学习笔记

搞了这么久发现自己到现在还不会启发式搜索ヾ(。`Д´。)所以今天正好趁着搜索练习题的风去搞了启发式搜索 A*搜索算法,俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法...
  • CreationAugust
  • CreationAugust
  • 2014年12月14日 21:48
  • 1504

CMPSCI 683 AI 第三讲 启发式搜索-IDA*算法

IDA*算法是A*算法和迭代加深ID算法的结合,先搜录相关资料如下[1] 搜索算法:IDA*算法,这是对IDA*算法的一个解释和学习笔记http://blog.csdn.net/urecvbnkuhB...
  • yangliuy
  • yangliuy
  • 2014年10月29日 13:10
  • 2414

ACM:搜索算法专题(3)——启发式搜索

题目来源:          HihoCoder1312 题目描述:     给出一个九宫格的拼图游戏的棋局,求完成拼图最少需要一定的步数。 解答: ·规则:      首先简要说明游...
  • octopusflying
  • octopusflying
  • 2016年06月07日 14:25
  • 2972

A*启发式搜索

A*算法,作为启发式算法中很重要的一种,被广泛应用在最优路径求解和一些策略设计的问题中。而A*算法最为核心的部分,就在于它的一个估值函数的设计上: f(n)=g(n)+h(n)        其...
  • u013008291
  • u013008291
  • 2015年02月15日 11:56
  • 818

参数寻优:启发式搜索方法

前面介绍了参数寻优的传统方法,梯度下降,牛顿下降等,传统的参数寻优方法,都是提供了下降的方向和大小参考。如果参数非常多,成千上万个参数,很多峰谷时,有没有较好的方法去估计最优解呢。本文介绍的方法就是在...
  • yujianmin1990
  • yujianmin1990
  • 2015年08月24日 23:12
  • 3170
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:启发式搜索A * 算法
举报原因:
原因补充:

(最多只允许输入30个字)