首先低于一般范围的整数分解,我们可以打一个素数表然后用试除的方法对其进行质因子分解。
具体实现代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define N 65555
bool p[N];
int prime[N],num=0;
void init()
{
memset(p,true,sizeof(p));
for(int i=2;i<N;i++)
if(p[i])
{
prime[num++]=i;
for(int j=i+i;j<N;j+=i)
p[j]=0;
}
}
int main()
{
init();
int n,ans[100];
while(scanf("%d",&n)!=-1)
{
int cnt=0;
for(int i=0;i<num&&prime[i]*prime[i]<=n;i++)
{
if(n%prime[i]==0)
{
n/=prime[i];
ans[cnt++]=prime[i];
while(n%prime[i]==0)

本文介绍了如何使用Pollard-rho算法进行大整数分解。当传统试除法不再适用时,Pollard-rho算法通过生成并计算两个整数的差的质因数来找出大整数的约数,通过迭代和gcd运算,直至找到非平凡约数或判断为素数。
最低0.47元/天 解锁文章
1738

被折叠的 条评论
为什么被折叠?



