# codeforces 149d Coloring Brackets

Coloring Brackets
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.

You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.

In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:

• Each bracket is either not colored any color, or is colored red, or is colored blue.
• For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
• No two neighboring colored brackets have the same color.

Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).

Input

The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.

Output

Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).

Sample test(s)
Input
(())

Output
12

Input
(()())

Output
40

Input
()

Output
4

Note

Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.

The two ways of coloring shown below are incorrect.

【题意】给出正确的括号匹配，每一对都要选择一个括号染色（红色或蓝色），相邻的括号不能是同种颜色
【思路】区间dp。dp[i][j][x][y] 表示 括号i到括号 j  ,其中 i 括号 的左边括号的染色情况为 x，j 括号的右边括号的染色情况为 y。0,表示没有染色，1 表示染了红色，2表示染了蓝色。

【代码】
/*************************************************************************
> File Name: cf149d.cpp
> Author: wanghao
> Mail: haohaoac@163.com
> Created Time: 2015年07月10日 星期五 10时43分48秒
************************************************************************/

#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long
using namespace std;

int mod=1000000007;
ll dp[710][710][3][3];
int to[710];
int dd[][2]={1,0,2,0,0,1,0,2};
int main()
{
char s[710];
while(scanf("%s",s+1)!=EOF)
{
int left[710];
int cnl=0;
memset(dp,0,sizeof(dp));
int n=strlen(s+1);
for(int i=1;i<=n;i++)
if(s[i]=='(')
left[cnl++]=i;
else
{
to[i]=left[cnl-1];
to[left[cnl-1]]=i;
cnl--;
}
//		for(int i=1;i<=n;i++)
//			cout<<to[i]<<ends;
//		cout<<endl;
for(int len=2;len<=n;len+=2)
{
for(int i=1;i+len-1<=n;i++)
{
int j=i+len-1;//每次计算的dp[i][j]，必须是合法的括号匹配串
if(s[i]==')'||s[j]=='(')continue;
int toj=to[j],toi=to[i];
if(toi==j)//当i和j是匹配
{
for(int ii=0;ii<3;ii++)
for(int jj=0;jj<3;jj++)
for(int w=0;w<4;w++)
{
if(ii&&ii==dd[w][0])continue;
if(jj&&jj==dd[w][1])continue;
if(len==2)
{
dp[i][j][ii][jj]+=1;
continue;
}
dp[i][j][ii][jj]=(dp[i][j][ii][jj]+dp[i+1][j-1][dd[w][0]][dd[w][1]])%mod;
}
continue;
}
if(toj<toi)continue;//当i,j不是匹配的时候
for(int ii=0;ii<3;ii++)
for(int jj=0;jj<3;jj++)
for(int k=0;k<4;k++)
{
if(ii&&ii==dd[k][0])continue;
for(int w=0;w<4;w++)
{
if(jj&&dd[w][1]==jj)continue;
if(toi+1==toj&&dd[k][1]&&dd[k][1]==dd[w][0])continue;
ll tmp=toi+1==toj?1:dp[toi+1][toj-1][dd[k][1]][dd[w][0]];
ll tmp1=i+1<toi-1?dp[i+1][toi-1][dd[k][0]][dd[k][1]]:1;
ll tmp2=toj+1<j-1?dp[toj+1][j-1][dd[w][0]][dd[w][1]]:1;
dp[i][j][ii][jj]=(dp[i][j][ii][jj]+tmp1*tmp%mod*tmp2%mod)%mod;//将括号串分为 (i,toi),(roi+1,toj-1),(toj,j)三个子串
}
}
}
}
cout<<dp[1][n][0][0]<<endl;

}
return 0;
}

• 本文已收录于以下专栏：

## CodeForces 149D Coloring Brackets（区间DP+dfs）

﻿﻿ 题意：给出一串已经匹配好的括号，现在要给它们上色，每个括号可以选择蓝色，红色，不上色三种情况，但是相邻的括号颜色不能相同，（可以同无色），每一对匹配的括号都有且仅有一个括号染色。 思路：首先...

## CodeForces-149D Coloring Brackets(区间dp)

D - Coloring Brackets  CodeForces - 149D  题意：给一个合法的括号串，然后问这串括号有多少种涂色方案，涂色要求为： ①每个括号只有三种...

## Codeforces Round #106(Div. 2) 149D. Coloring Brackets 区间DP 记忆化搜索

D. Coloring Brackets time limit per test 2 seconds memory limit per test 256 megabytes ...

## CodeForces - 149D Coloring Brackets（区间dp）

• ciel_s
• 2017年03月10日 18:15
• 83

## CodeForces 149D Coloring Brackets(区间DP)

举报原因： 您举报文章：codeforces 149d Coloring Brackets 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)