Hdu 4335 What is N? 欧拉函数降幂公式 + 循环节

原创 2016年08月28日 16:16:52

a^n mod c= a^(n mod phi(c) + phi(c)) mod c (n >= phi(c) )
n! mod phi(c) = 0 n!的因子只需包含 phi(c) 因为 这题phi(mod) 不会太大
然后所有的n! mod phi(c) 都等于0 最后问题转化成有多少个n ^ phi(c)mod p = b;
(a + b)^n = (a mod p + b mod p) ^ n (mod p)
所以这个式子是个长度为p的循环节
根绝循环节求结果就行了

#include<cstdio>
#include<algorithm>
#include<iostream>
#define LL unsigned long long
#define lson i<<1
#define rson (i<<1)+1
#define maxn 100005
// a^n mod c= a^(n mod phi(c) + phi(c)) mod c  n >= phi(c)
using namespace std;
LL b, mod, M, am[maxn];
LL getEul(LL n)
{
   LL ans = 1;
   for(LL i = 2; i * i <= n; i++)
   {
       if(n % i == 0)
       {
          ans *= (i - 1);
          while(n % i == 0)
          {
              n /= i;
              ans *= i;
          }
       }
   }
   if(n > 1) ans *= n - 1;
   return ans;
}
LL fastMod(LL a, LL x)
{
    LL ans = 1;
    while(x)
    {
        if(x & 1) ans *= a;
        a *= a;
        ans %= mod;
        a %= mod;
        x >>= 1;
    }
    return ans;
}
int main()
{
    int t, i1 = 1;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%I64u%I64u%I64u", &b, &mod, &M);
        printf("Case #%d: ", i1++);
        if(mod == 1)
        {
            if(M == 18446744073709551615ull)
            {
                printf("18446744073709551616\n");
            }
            else{
                printf("%I64u\n", M + 1);
            }
            continue;
        }

        LL eu = getEul(mod);
        //printf("%I64u\n", eu);
        LL pre = 1;
        LL i = 0;
        LL ans = 0;
        for( ; i <= M && pre < eu; i++)
        {
            if(fastMod(i, pre) == b) ans++;
            pre *= (i + 1);
        }

        pre %= eu;
        for( ; i<= M && pre; i++)
        {
            if(fastMod(i, pre + eu) == b) ans++;
            pre *= (i + 1);
            pre %= eu;
        }

        int cnt = 0;
        for(int j = 0; i <= M && j < mod; j++ , i++)
        {
            if(fastMod(i, eu) == b) {ans++;cnt++;}
            am[j] = cnt;
        }

        if(i <= M){
            M-=i;
            M+=1;
            LL cir = M / mod;
            ans += cnt * cir;
            M -= cir * mod;
            if(M > 0) ans += am[M - 1];
        }
        printf("%I64u\n", ans);
    }
    return 0;
}

FZU 1759 Super A^B mod C (欧拉函数,快速幂,降幂公式)

题目链接:http://acm.fzu.edu.cn/problem.php?pid=1759 一道吓人的题。。 不禁再次感叹数学真伟大,使用下面的降幂公式很简单就写出来了。 phi是欧...

HDU 4335What is N?2012多校联赛第四场(欧拉函数+坑数据)

What is N? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot...
  • opm777
  • opm777
  • 2013年08月13日 16:05
  • 858

hdu4335 降幂公式 模循环节

http://blog.csdn.net/ACM_cxlove?viewmode=contents 大意找出多少个N满足下式 范围如此之大啊。结果做...
  • c_czl
  • c_czl
  • 2017年08月04日 10:31
  • 76

[HDU 5728] PowMod (欧拉函数的积性+欧拉公式降幂+欧拉筛)

HDU - 5728 求 K=∑i=1mϕ(i∗n)mod1000000007K = \displaystyle\sum_{i=1}^m {\phi(i*n)} mod 1000000007 ...

HDU 5895 矩阵快速幂+欧拉降幂公式+指数循环节

题目链接:HDU5895 注意到题目的数据非常之大,并且递归之后求的指数幂非常之大,所以要先知道欧拉降幂公式: ,相当于想成了指数的循环节。 根据递推关系得到: 建立矩阵: 用矩阵快...

HDU 4335 What is N? 多校4(数论)

转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents           by---cxlove 题目:http://acm....

hdu4335 What is N?------多校联合4

不知道亚洲赛的风格是不是这样,我感觉这题无法形容~~~ 为了真正理解这题,所以我决定好好写个解题报告。 我是看了后来发的解题报告写的,按他所说,我们分两种情况考虑。 第一种:当n比较大的时候,就...

HDU 5728 PowMod (欧拉函数+指数循环节)

PowMod (点击打开题目) Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others...

HDU - 5728 欧拉函数 + 数学推导 + 指数循环节

题意: 已知: 其中n是一个没有重复质因子的数,而φ(x)就是欧拉函数。 求解ans的值。 思路: 首先要知道欧拉函数的公式: 其中,p1到pn是x不重复的质因子。 根据这个公式以及定义,很容易能...
  • Bahuia
  • Bahuia
  • 2017年03月19日 15:32
  • 202

HDU 5895 Mathematician QSC (矩阵快速幂 + 逆元应用 + 指数循环节 + 欧拉函数)

大体题意: 题意很简单 计算表达式x^g[ny] % (s+1) 思路: 这个题弄了两天了,查了好多知识点才搞定 = =! 在看看g(n)的定义   g(n) = f(1)^2 + f(2)^2 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hdu 4335 What is N? 欧拉函数降幂公式 + 循环节
举报原因:
原因补充:

(最多只允许输入30个字)