关闭

hdu 4390 容斥组合数学

104人阅读 评论(0) 收藏 举报
分类:

先抽象出 n个相同物品放在m个不同抽屉里的模型 结果为C(n, n+m-1)
然后本题要求抽屉里必须放物品 所以要反向思维容斥求出有抽屉不放物品的方案数
为大于等于一个为空的方案减大于等于两个为空的方案加大于等于三个为空的方案。。。。

#include<cstdio>
#include<cstring>
#include<vector>
#define LL long long
using namespace std;
#define maxn 1000005
#define mod 1000000007ll
int am[maxn], n, ans[100];
LL c[1005][1005];
int main()
{
    for(int i = 0; i<= 1004; i++)
        for(int j = 0; j<= i; j++)
        {
            if(j == 0 || j == i) c[i][j] = 1;
            else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
        }
    while(scanf("%d", &n)!=EOF)
    {
        vector<int>ve;
        memset(am, 0, sizeof(am));
        for(int i = 0; i < n; i++)
        {
            int tmp;
            scanf("%d", &tmp);
            for(int j = 2; j * j <= tmp; j++)
                while(tmp % j == 0)
                {
                    tmp /= j;
                    am[j]++;
                }
            am[tmp]++;
        }
        for(int i = 2; i < maxn ; i++) if(am[i]) ve.push_back(am[i]);
        LL ans1 = 1;
        for(int i = 0; i < ve.size(); i++)
        {
            ans1 *= c[n + ve[i] - 1][ve[i]];
            ans1 %= mod;
        }
        LL ans2 = 0;
        for(int i = 1; i <= n; i++)
        {
              LL tmp = c[n][i];
              for(int j = 0; j < ve.size(); j++)
              {
                 tmp *= c[n + ve[j] - 1 - i][ve[j]];
                 tmp %= mod;
              }
              if(i & 1)ans2 += tmp;
              else ans2 -= tmp;
              ans2 = (ans2 + mod) % mod;
        }
        printf("%I64d\n", (ans1 - ans2 + mod) % mod);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:46674次
    • 积分:2410
    • 等级:
    • 排名:第16347名
    • 原创:203篇
    • 转载:0篇
    • 译文:0篇
    • 评论:7条
    最新评论