hdu 4390 容斥组合数学

原创 2016年08月30日 15:04:43

先抽象出 n个相同物品放在m个不同抽屉里的模型 结果为C(n, n+m-1)
然后本题要求抽屉里必须放物品 所以要反向思维容斥求出有抽屉不放物品的方案数
为大于等于一个为空的方案减大于等于两个为空的方案加大于等于三个为空的方案。。。。

#include<cstdio>
#include<cstring>
#include<vector>
#define LL long long
using namespace std;
#define maxn 1000005
#define mod 1000000007ll
int am[maxn], n, ans[100];
LL c[1005][1005];
int main()
{
    for(int i = 0; i<= 1004; i++)
        for(int j = 0; j<= i; j++)
        {
            if(j == 0 || j == i) c[i][j] = 1;
            else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
        }
    while(scanf("%d", &n)!=EOF)
    {
        vector<int>ve;
        memset(am, 0, sizeof(am));
        for(int i = 0; i < n; i++)
        {
            int tmp;
            scanf("%d", &tmp);
            for(int j = 2; j * j <= tmp; j++)
                while(tmp % j == 0)
                {
                    tmp /= j;
                    am[j]++;
                }
            am[tmp]++;
        }
        for(int i = 2; i < maxn ; i++) if(am[i]) ve.push_back(am[i]);
        LL ans1 = 1;
        for(int i = 0; i < ve.size(); i++)
        {
            ans1 *= c[n + ve[i] - 1][ve[i]];
            ans1 %= mod;
        }
        LL ans2 = 0;
        for(int i = 1; i <= n; i++)
        {
              LL tmp = c[n][i];
              for(int j = 0; j < ve.size(); j++)
              {
                 tmp *= c[n + ve[j] - 1 - i][ve[j]];
                 tmp %= mod;
              }
              if(i & 1)ans2 += tmp;
              else ans2 -= tmp;
              ans2 = (ans2 + mod) % mod;
        }
        printf("%I64d\n", (ans1 - ans2 + mod) % mod);
    }
    return 0;
}

hdu 4390 Number Sequence(组合数学+容斥定理)

Number Sequence Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)...

周赛 1007 题解 hdu 4390 Number Sequence (质因数分解+组合数学+容斥原理)

Number Sequence Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe...

hdu 4390 Number Sequence (容斥原理)

Number Sequence Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Ot...

hdu 4390 Number Sequence 【容斥原理】

#include #include #include #include #include #include #include #include #include #include #include #...
  • zz_1215
  • zz_1215
  • 2012年09月11日 10:25
  • 541

#HDU4390#表达式计数(第二类Stirling + 容斥)

[HDU4390]表达式计数 时间限制: 1 Sec  内存限制: 128 MB 题目描述 给出n个数,b1,b2,b3……bn,构造n个数,a1,a2,……an(ai>1),使得a1*a2*a...

hdu 4390 隔板+容斥

Given a number sequence b 1,b 2…b n. Please count how many number sequences a 1,a 2,…,a n satisfy ...

hdu4390 容斥原理

突然发现以前没坐过数学题,,菜菜菜啊、、、看了下题目,知道用容斥原理,但好多什么分解质因数,什么的都不会 ,于是搜了下别人博客,然后才会的、、现在开始做点数学题。。up~~ 比较简单的题目:分...

【HDU】4390 Number Sequence 容斥原理

传送门:【HDU】4390 Number Sequence

HDU 4390 Number Sequence ---容斥原理

先对每个数 质数分解。 假如有m个质因子,每个质因子有ai个;n个数 然后容斥原理。。 #include #include #include #include #include using na...

HDU 1695 GCD (数论-整数和素数,组合数学-容斥原理)

HDU 1695 GCD (数论-整数和素数,组合数学-容斥原理) 题目大意: 从1~a区间取一个数x,从1~b区间取一个数y,问你gcd(x,y)=k有多少种方案?其中x1,y1和y1,x1算同一...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu 4390 容斥组合数学
举报原因:
原因补充:

(最多只允许输入30个字)