hdu 5072 Coprime 容斥 同色三角形

原创 2016年08月30日 22:16:40

n个点之间都有边相连颜色为红或黑, 那对于每个点能形成异色三角形的方案为blackEdge[i] * redEdge[i] ,这n个点能形成异色三角形的方案数为 sum (blackEdge[i] * redEdge[i]) /2 (1<=i<=n)
如果两个数互质就是红边不互质就是黑边,抽象出这个基本模型就行了这个是难点。。。
判断 每个点有几个点与其互质分解质因子用容斥原理也是最基本的方法

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cmath>
#define maxn 100005
#define LL long long
using namespace std;
int prime[maxn][11], flag[maxn], num[maxn];
void getPrime()
{
     for(int i = 2; i < maxn; i++)
         if(!flag[i])
         {
             prime[i][num[i]++]  = i;
             for(int j = i * 2; j < maxn; j += i)
             {
                 flag[j] = true;
                 prime[j][num[j]++] = i;
             }
         }
}
int n, am[maxn], ans, a[maxn];
int edge[maxn][2], tmp;
void dfs(LL pre, int index, int sum, int a)
{
     if(pre > 100000) return ;
     if(sum)
     {
         if(sum & 1) tmp += am[pre];
         else tmp -= am[pre];
     }
     for(int i = index; i < num[a]; i++)
         dfs(pre * prime[a][i], i + 1, sum + 1, a);
}
int main()
{
    int t;
    getPrime();
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d", &n);
        memset(am, 0, sizeof(am));
        for(int i = 0; i < n; i++)
        {
            scanf("%d", &a[i]);
            for(int j = 1; j * j <= a[i]; j++)
            if(a[i] % j == 0)
            {
                am[j]++;
                if(j != a[i] / j){
                    am[a[i] / j]++;
                }
            }
        }
        LL ans1 = (LL) n * (n - 1) * (n - 2) / 6, ans2 = 0;
        for(int i = 0; i < n; i++)
        {
            tmp = 0;
            dfs(1, 0, 0, a[i]);
            if(a[i] != 1)tmp--;
            edge[i][0] = tmp;
            edge[i][1] = n - 1 - tmp;
        }
        for(int i = 0; i < n; i++)
            ans2 += (LL)edge[i][0] * edge[i][1];
        printf("%I64d\n", ans1 - ans2 / 2);
    }
    return 0;
}

word转PDF公式缺失

最近用word2013将一个word文档转变成PDF,发现上面的MathType编辑的公式和字符有部分缺失,如下: 然后百度,有说用smallPDF在线转换功能的,试了下,公式缺失的问题解决了,但是...

爬楼梯问题

有m级台阶,每次可以上n个或者n个以下,问有多少种走法。比如有4级 每次最多可以走3级台阶,则走法为{1,1,1,1} {2,1,1,}{1,2,1}{1,1,2}{2,2}{1,3}{3,1}共7种...
  • lidec
  • lidec
  • 2015年04月04日 21:33
  • 716

HDU 5072 Coprime(同色三角形+容斥)

题目大意:给你n个数,让你选出三个数,使得[(a, b) = (b, c) = (a, c) = 1] or [(a, b) ≠ 1 and (a, c) ≠ 1 and (b, c) ≠ 1]成立,...

HDU 5072 Coprime (莫比乌斯反演+容斥+同色三角形)

HDU 5072 Coprime (莫比乌斯反演+容斥+同色三角形)

hdu 5072 Coprime(同色三角形+容斥)

http://acm.hdu.edu.cn/showproblem.php?pid=5072 单色三角形模型 现场赛和队友想了3个小时,最后发现想跑偏了。感觉好可惜的一道题,要...

hdu 5072 Coprime 2014 Asia AnShan Regional Contest 单色三角形模型+容斥 好题!

题意:给了n个不同的数,要求有多少个三元组,两两互质 或者 两两不互质。 思路:         单色三角形模型:给定空间的n个点,其中没有三点共线。每两个点之间都用红色或者黑色线段连接,求3条边...

hdu 5072 Coprime(单色三角形问题+容斥原理)

Coprime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Tota...

HDU5072-Coprime-2014鞍山站C题-单色三角形+容斥

题目链接题意:是给你n个数,然后问你有多少组数(每组3个数)满足两两互质或者两两不互质。思路:问题可以转换成一张完全图中有n个点,每两个点间有一条线,互质是黑色,不互质是白色。问图种有多少个单色三角形...

Coprime HDU - 5072 单色三角形+莫比乌斯反演+容斥原理

单色三角形:如果每个人都有关系的话,认识或者不认识,随便找6个人(或以上),则一定会有三个人互相认识,或者互相不认识。因为每个人和其他人都有关系嘛,认识或者不认识。则一个人A与其他5个人有都有关系,这...
  • bllsll
  • bllsll
  • 2017年07月10日 20:01
  • 208

HDU 5072 Coprime (单色三角形问题+容斥原理)

单色三角形问题,HDU5072 Coprime
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu 5072 Coprime 容斥 同色三角形
举报原因:
原因补充:

(最多只允许输入30个字)