关闭

hdu 5072 Coprime 容斥 同色三角形

197人阅读 评论(0) 收藏 举报
分类:

n个点之间都有边相连颜色为红或黑, 那对于每个点能形成异色三角形的方案为blackEdge[i] * redEdge[i] ,这n个点能形成异色三角形的方案数为 sum (blackEdge[i] * redEdge[i]) /2 (1<=i<=n)
如果两个数互质就是红边不互质就是黑边,抽象出这个基本模型就行了这个是难点。。。
判断 每个点有几个点与其互质分解质因子用容斥原理也是最基本的方法

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cmath>
#define maxn 100005
#define LL long long
using namespace std;
int prime[maxn][11], flag[maxn], num[maxn];
void getPrime()
{
     for(int i = 2; i < maxn; i++)
         if(!flag[i])
         {
             prime[i][num[i]++]  = i;
             for(int j = i * 2; j < maxn; j += i)
             {
                 flag[j] = true;
                 prime[j][num[j]++] = i;
             }
         }
}
int n, am[maxn], ans, a[maxn];
int edge[maxn][2], tmp;
void dfs(LL pre, int index, int sum, int a)
{
     if(pre > 100000) return ;
     if(sum)
     {
         if(sum & 1) tmp += am[pre];
         else tmp -= am[pre];
     }
     for(int i = index; i < num[a]; i++)
         dfs(pre * prime[a][i], i + 1, sum + 1, a);
}
int main()
{
    int t;
    getPrime();
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d", &n);
        memset(am, 0, sizeof(am));
        for(int i = 0; i < n; i++)
        {
            scanf("%d", &a[i]);
            for(int j = 1; j * j <= a[i]; j++)
            if(a[i] % j == 0)
            {
                am[j]++;
                if(j != a[i] / j){
                    am[a[i] / j]++;
                }
            }
        }
        LL ans1 = (LL) n * (n - 1) * (n - 2) / 6, ans2 = 0;
        for(int i = 0; i < n; i++)
        {
            tmp = 0;
            dfs(1, 0, 0, a[i]);
            if(a[i] != 1)tmp--;
            edge[i][0] = tmp;
            edge[i][1] = n - 1 - tmp;
        }
        for(int i = 0; i < n; i++)
            ans2 += (LL)edge[i][0] * edge[i][1];
        printf("%I64d\n", ans1 - ans2 / 2);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:46542次
    • 积分:2409
    • 等级:
    • 排名:第16097名
    • 原创:203篇
    • 转载:0篇
    • 译文:0篇
    • 评论:7条
    最新评论