小数在内存中的存储表示

本文详细介绍了如何将十进制小数转换为二进制小数,并解释了单精度(float)与双精度(double)浮点数在内存中的存储原理。通过实例说明了符号位、指数位及尾数部分的具体含义。

整数在内存中的存储方式比较简单,我们来看看小数在内存中的存储方式。首先,要学会十进制小数与二进制小数之间的转换。

   

(1)二进制小数转化为十进制小数

  

   比如把二进制小数110.11转化为十进制小数,步骤如下:

   


(2)十进制小数转化为二进制小数


   方法是这样的:先分别把十进制小数的整数部分和小数部分转化为二进制,然后合并即可。当然整数部分很简单,直接进行二进制转化,而小数部分就不一样了。


   具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的整数部分为零,或者整数部分为1,此时0或1为二进制的最后一位,或者达到所要求的精度为止。比如:


   将十进制小数173.8125转化为二进制小数

   

   

   即


所以最终得到:


那么,小数在内存中是怎么存储的呢?


无论是单精度小数还是双精度小数,在存储中都分为三个部分。


  (1)符号位           0代表正,1代表负

  (2)指数位           用于存储科学计数法中的指数数据,并且采用移位存储

  (3)尾数部分


指数有正有负,注意指数位采用移位存储,偏移量为127,假设指数为2,那么指数码表示为129的二进制形式,即10000001


在内存中从高位到低位依次是符号位,指数位和尾数部分。


   float  的符号位占1位,指数位占8位,尾数部分占23位

   double 的符号位占1位,指数位占11位,尾数部分占52位


我们以173.8125为例,我们知道计算机只认识二进制数据,由于173.8125对应的二进制数据为10101101.1101

那么把10101101.1101写成,实际上任何一个十进制小数转化为二进制小数后都可以表示为小数点前面的1是固定的,所以不进行存储),那么尾数部分存储的实际上就是,而指数位存储的就是127+m的二进制形式,当m=7时为10000110。


所以173.8125在内存中存储为0 10000110 01011011100000000000000


下面有一段代码:

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef long long LL;

int main()
{
    float x = 1.0;
    cout<<(int &)x<<endl;
    cout<<*(int *)&x<<endl;
    return 0;
}

我们发现输出结果均为1065353216


分析:

由于1.0为float型数据,占4字节,可以知道1.0在内存中存储为0 01111111 00000000000000000000000,对于语句 *(int *)&x,意思就是说先将float型的x的指针强制转换为int型的指针,然后取出值。由于是按照float型数据存储的,而却解释成int型,即对应的int整数为,而(int &)x就相当于*(int *)&x

   


在C语言中,`float` 类型的浮点数在内存中的存储遵循 IEEE 754 标准,该标准定义了浮点数的格式以及如何进行浮点运算[^3]。IEEE 754 标准规定了单精度(32位)浮点数和双精度(64位)浮点数的存储格式。`float` 类型通常使用单精度格式[^4]。 ### IEEE 754 单精度浮点数格式 IEEE 754 单精度浮点数占用 32 位(4 字节),其存储格式分为三个部分: 1. **符号位**(1 位):表示浮点数的正负,0 表示正数,1 表示负数。 2. **指数部分**(8 位):表示浮点数的指数部分,采用偏移表示法(Bias),偏移值为 127。 3. **尾数部分**(23 位):表示浮点数的有效数字部分,存储的是小数部分,而不是完整的有效数字。 浮点数的实际值可以通过以下公式计算: $$ \text{Value} = (-1)^{\text{符号位}} \times 1.\text{尾数部分} \times 2^{(\text{指数部分} - 127)} $$ ### 示例解析 以下代码展示了如何查看 `float` 类型数据在内存中的存储形式: ```c #include <stdio.h> #include <math.h> union stu { int i; char c; float f; } a; int main() { a.i = 97; // 将整数 97 赋值给联合体中的 int 成员 printf("Integer value: %d\n", a.i); printf("Char value: %c\n", a.c); printf("Float value: %.100f\n", a.f); // 查看 float 成员在内存中的存储形式 printf("Calculated float value: %.100f\n", pow(2, -126) * (pow(2, -17) + pow(2, -18) + pow(2, -23))); return 0; } ``` 在这段代码中,`a.i = 97;` 将整数 97 赋值给联合体中的 `int` 成员,而通过 `a.f` 可以查看 `float` 类型在内存中的存储形式。输出的结果显示了浮点数在内存中的二进制表示[^4]。 ### 字节顺序的影响 `float` 类型的存储顺序会受到系统架构的影响。在大端(Big-Endian)系统中,最高有效字节存储在最低的内存地址,而在小端(Little-Endian)系统中,最低有效字节存储在最低的内存地址。例如,浮点数 `0x12345678` 在大端系统中存储为 `12 34 56 78`,而在小端系统中存储为 `78 56 34 12`[^2]。 ### 内存对齐与存储 在 C 语言中,`float` 类型的存储还需要遵循内存对齐规则。通常情况下,`float` 占用 4 字节,因此它会从 4 的倍数地址开始存储,以提高内存访问效率[^2]。 ### 浮点数的精度问题 由于 IEEE 754 标准的限制,`float` 类型在存储和计算过程中可能会出现精度问题。例如,某些十进制小数无法精确表示为二进制浮点数,这会导致计算结果出现微小误差。为了避免这些问题,可以使用更高精度的 `double` 类型,或者在需要精确计算的场景中使用定点数或十进制库[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值