贝叶斯学习及共轭先验

本文深入探讨了贝叶斯学习的概念,通过硬币投掷的例子解释了贝叶斯公式,强调了先验概率在避免极端估计中的作用。接着介绍了Beta分布及其在伯努利试验中的共轭先验特性,简化了计算过程。推荐了三篇关于Beta分布和共轭先验的进一步阅读材料。
摘要由CSDN通过智能技术生成

今天的主要任务是来理解共轭先验以及贝叶斯学习。最近在研究主题模型,里面用到了一些,另外在机器学习中,贝叶斯学习是重要的一个方向,所以有必要学习和掌握。

 

 

Contents

 

   1. 贝叶斯学习

   2. Beta分布及共轭先验

 

 

1. 贝叶斯学习

 

   首先,我从最简单的硬币投掷开始。现在给你一个硬币,假设有的概率为正面朝上,那么有的概率是背

   面朝上,那么如果在5次投掷过程中,有3次是正面朝上,那么这个最可能是多少呢?


   凭着直观感觉,我们可能会认为是3/5

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值