今天的主要任务是来理解共轭先验以及贝叶斯学习。最近在研究主题模型,里面用到了一些,另外在机器学习中,贝叶斯学习是重要的一个方向,所以有必要学习和掌握。
Contents
1. 贝叶斯学习
2. Beta分布及共轭先验
1. 贝叶斯学习
首先,我从最简单的硬币投掷开始。现在给你一个硬币,假设有的概率为正面朝上,那么有
的概率是背
面朝上,那么如果在5次投掷过程中,有3次是正面朝上,那么这个最可能是多少呢?
凭着直观感觉,我们可能会认为是3/5,当然这是根据统计规律得到的结论。那么实际上

本文深入探讨了贝叶斯学习的概念,通过硬币投掷的例子解释了贝叶斯公式,强调了先验概率在避免极端估计中的作用。接着介绍了Beta分布及其在伯努利试验中的共轭先验特性,简化了计算过程。推荐了三篇关于Beta分布和共轭先验的进一步阅读材料。
最低0.47元/天 解锁文章
1433

被折叠的 条评论
为什么被折叠?



