Android Out of Memory (OOM)

转载 2012年11月13日 16:25:45
何謂OOM呢?
OOM (Out of Memory),就是溢存的意思,
白話點就是超出記憶體大小了,
每個APP,都會有配置一定大小的heap size,
但這個heap size在每支設備上都不同,
像在Nexus one就是24mb,HTC Sensation只有16mb,
大小都不一定的,所以我們在寫app時,
必須做好記憶體的控管,

有些人可能會納悶,不是用JAVA寫的嗎?
JAVA無法對記憶體有更進一步的操作(配置、釋放)阿,
怎麼做好記憶體的控管呢?
恩,沒有錯。

【那OOM的問題會發生在哪?】
就是在圖片的使用!!!!!!
你每調用一張圖片,在android上都會做到auto scale的動作,
在做auto scale的動作是用C去配置記憶體的,
因此就會占用記憶體,
如果沒有做好控管,就會發生溢存!
那怎麼做好控管呢?


你們有時會發現有些APP好大喔,
有部分原因可能是引用其他外部的lib,
很少是因為程式碼寫太多....
大部分的問題就是在圖片太多,且太大,
沒有好好善用draw9patch,何謂draw9patch可以來這看
當然draw9patch並不適用所有的案例,
甚至連根據dpi的不同,放圖片在不同的資料夾,
這方法我也覺得不適用所有案例,
我大多都還是去取得螢幕大小,自己去做到裁切圖片的動作,
個人覺得這樣是最精準的(畢竟android device實在太多..................)。


網路上有些解法是,
在做重新裁切或者取得圖片的動作時,
把圖片品質設小一點。
當然這也是一種解法啦。
但個人看法,認為這解法治標不治本,
怎麼說呢? 畢竟如果圖片一多,
OOM的問題還是會發生。


所以最根本的解法在於recycle!
但是recycle的時機很重要,
畢竟如果圖片還在使用中就進行recycle的話,
可是會發生crash的。

我的建議是在Android Life Cycle中的onDestroy中進行recycle,
此時最為保險。當然如果你能保證你的圖片用不到了,就可以進行recycle了。
不一定要照我的建議而做。


這裡有個情境,假設我有4個畫面,A,B,C,D。
A有按鈕跳到B
B有按鈕跳到C
C有按鈕跳到D
每個畫面都有一張不同的背景圖,
怎麼設背景圖呢?
大部分人會在layout.xml中去做設定,
或者會在程式中設定,
如下:
1 linearLayout.setBackgroundDrawable(getResources().getDrawable(R.drawable.bg_normal));
這樣看似沒有甚麼問題,
但如果ABCD畫面換來換去,經過多次換來換去以後,
這時候heapSize就會越來越小....
最後就會發生OOM!

所以較好的做法就是在lifecycle中的onCreate中,
去做init的動作,
先宣告二個全域的變數
一個是用來存圖片的BitmapDrawable
一個是放置圖片的LinearLayout,如下:
1 private LinearLayout llBackgroundPanel = null;
2 private BitmapDrawable bmpDrawImg  = null;

接著在onCreate中去呼叫一個自己寫好的函數(fnSetBackground)
這個函數就是用來設背景圖片的,如下:
1 @Override
2 public void onCreate(Bundle savedInstanceState) {
3     super.onCreate(savedInstanceState);
4     setContentView(R.layout.a);
5     fnSetBackground(); // 呼叫函數
6 }

而函數內容如下:
1 public void fnSetBackground(){
2     // 先取得LinearLayout
3     llBackgroundPanel = (LinearLayout) findViewById(R.id.llBackgroundPanelChangePwd);
4     // 取得該張圖片,並放置在變數bmpDrawImg中
5     bmpDrawImg = new BitmapDrawable(getResources().openRawResource(R.drawable.bg_normal));
6     // 最後就是設定圖片
7     llBackgroundPanel.setBackgroundDrawable(bmpDrawImg);
8 }

完成上面步驟,只是設置圖片而已,
還是無法解決OOM的問題,下面才是解決的方式,
在lifecycle中的onDestroy中去進行清空,
01 @Override
02 protected void onDestroy() {
03     super.onDestroy();
04     // 每個Drawable被加到VIEW上面都會產生一個callback,所以在recycle圖片之前,必須先把callback設成null
05     // 設成null以後,背景圖片自然就會不見,就會變成黑的背景。bmpDrawImg的狀態就會是沒有被使用中。
06     llBackgroundPanel.getBackground().setCallback(null);
07   
08     // 先判斷bmpDrawImg 是否為null,如果不是null,且bmpDrawImg 還沒有被recycle的話就進行recycle
09     if (null != bmpDrawImg && !bmpDrawImg.getBitmap().isRecycled()){
10         bmpDrawImg.getBitmap().recycle();
11     }
12     System.gc();
13 }


照著上面的方法實作就能避免掉OOM的問題,
我寫在destroy的原因在於,
android lifecycle的特性,
當你A按下按鈕到B,
這時候在B畫面中按下返回按鈕(back),
是不是就回到A了呢?
第一次按下返回按鈕,B會去調用onDestroy這個method,
如果這時候沒有進行recycle,那麼那塊記憶體空間就不會被釋放,
就會被占用著....
如果沒有進行RECYCLE,
久而久之,你持續返回A,又跳到B,重複著這動作好幾次,
圖片就被產生好幾次,
很快就會發生OOM,至於多快,就視你的圖片大小瞜!

相关文章推荐

Android Memory Management, OutOfMemoryError

A    Android框架强制每个进程的24 MB内存限制。在一些旧的设备,如在G1,限制为16 MB 更低,更重要的是,由位图使用的内存限制。处理图像的应用程序,它是很容...

Android签名机制之---签名验证过程详解

今天是元旦前夕,也是Single Dog的嚎叫之日,只能写博客来祛除寂寞了,今天我们继续来看一下Android中的签名机制的姊妹篇:Android中是如何验证一个Apk的签名。在前一篇文章中我们介绍了...

android签名机制

1.android为什么要签名

旋屏时,OnCreate方法重复调用的解决

Android设备屏幕自动横竖旋转时,每次都会重新调用onCreate函数进行初始化操作,如果遇到加载数据量稍微大点的时候就需要等待很长时间,用户体验较差,其实可以通过配置AndroidManifes...

Gradle build报错:Please correct the above warnings first解决方案

转载:gradle build报错:Please correct the above warnings first解决方案问题描述:在编译的时候,出现了下面的错误提示Warning: there we...

android系统信息(内存、cpu、sd卡、电量、版本)获取

要转载请注明出处:http://gqdy365.iteye.com/blog/1066113,有很多转载了文章不写出处,还写的是什么小编最近做项目碰到什么问题怎么解决的的然后把文章贴下面,俨然一副他们...

Android APK 签名机制

发布过Android应用的朋友们应该都知道,Android APK的发布是需要签名的。签名机制在Android应用和框架中有着十分重要的作用。例如,Android系统禁止更新安装签名不一致的APK;如...

android 弹出窗口

正常的Dialog弹出窗口,当点击窗口外围时关闭弹出的窗口,这个在很多弹出式的Activity上很为实用!   dialog.xml 弹出窗口的界面布局:   view p...

android apk 解包、打包、签名等一些操作的命名指导

首先下载apk解包、打包、签名所要的工具 http://download.csdn.net/detail/changcsw/6741573 下载后的压缩包中包含 解包、打包、签名 所用到的所以工具 ...

Android签名机制之---签名过程详解

一、前言又是过了好长时间,没写文章的双手都有点难受了。今天是圣诞节,还是得上班。因为前几天有一个之前的同事,在申请微信SDK的时候,遇到签名的问题,问了我一下,结果把我难倒了。。我说Android中的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)