关闭

hdu3062Party

787人阅读 评论(0) 收藏 举报
分类:

Party

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3619    Accepted Submission(s): 1179

Problem Description
有n对夫妻被邀请参加一个聚会,因为场地的问题,每对夫妻中只有1人可以列席。在2n 个人中,某些人之间有着很大的矛盾(当然夫妻之间是没有矛盾的),有矛盾的2个人是不会同时出现在聚会上的。有没有可能会有n 个人同时列席?
 
Input
n: 表示有n对夫妻被邀请 (n<= 1000)
m: 表示有m 对矛盾关系 ( m < (n - 1) * (n -1))

在接下来的m行中,每行会有4个数字,分别是 A1,A2,C1,C2 
A1,A2分别表示是夫妻的编号 
C1,C2 表示是妻子还是丈夫 ,0表示妻子 ,1是丈夫
夫妻编号从 0 到 n -1 
 
Output
如果存在一种情况 则输出YES 
否则输出 NO 
 
Sample Input
2 1 0 1 1 1
 
Sample Output
YES
 
   思路:刚开始看到题目没有什么思路,再想一想也没什么模型,然后就在网上搜索了一下,原来是没涉及的2-sat问题。
 这道题应该是2-sat的入门类题目,先是建图,然后强连通缩点,如果一对夫妇在一个强连通分量里面则输出NO。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
#include <stack>
using namespace std;
const int maxn = 2010;

//for dfs()
int dfs_clock, scc_cnt;
int pre[maxn], sccno[maxn], lowlink[maxn];
stack<int> S;
//for graph.
int gn, gm;
vector<int> G[maxn];


void dfs(int u) {
    pre[u] = lowlink[u] = ++dfs_clock;
    S.push(u);
    for(int i = 0; i < (int)G[u].size(); i++) {
        int v = G[u][i];
        if(!pre[v]) {
            dfs(v);
            lowlink[u] = min(lowlink[u], lowlink[v]);
        } else if(!sccno[v]) {
            lowlink[u] = min(lowlink[u], pre[v]);
        }
    }
    if(lowlink[u] == pre[u]) {
        scc_cnt++;
        for(;;) {
            int x = S.top(); S.pop();
            sccno[x] = scc_cnt;
            if(x == u) break;
        }
    }
}

void find_scc(int n) {
    dfs_clock = scc_cnt = 0;
    memset(pre, 0, sizeof(pre));
    memset(sccno, 0, sizeof(sccno));
    memset(lowlink, 0, sizeof(lowlink));
    for(int i = 0; i < gn*2; i++) {
        if(!pre[i]) dfs(i);
    }
}

int main()
{
    int a1, a2, c1, c2;
    int u, v;
    while(scanf("%d%d", &gn, &gm) != EOF) {
        for(int i = 0; i < maxn; i++) G[i].clear();
        for(int i = 0; i < gm; i++) {
            scanf("%d%d%d%d", &a1, &a2, &c1, &c2);
            u = (a1<<1)+c1; v = (a2<<1|1)-c2;
            G[u].push_back(v);
            u = (a2<<1) + c2; v = (a1<<1|1)-c1;
            G[u].push_back(v);
        }
        find_scc(gn);
        bool flag = true;
        for(int i = 0; i < gn; i++) {
            u = i<<1; v = i<<1|1;
            if(sccno[u] == sccno[v]) {
                flag = false;
                break;
            }
        }
        if(flag) printf("YES\n");
        else printf("NO\n");
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:387268次
    • 积分:8406
    • 等级:
    • 排名:第2334名
    • 原创:435篇
    • 转载:80篇
    • 译文:13篇
    • 评论:71条
    记录成长的足迹
    编程是件有趣的事情,因为热爱所以专一!
    最新评论