POJ 2299 Ultra-QuickSort(树状数组)

原创 2015年07月09日 00:01:24
Ultra-QuickSort
Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 47014   Accepted: 17182

Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,

Ultra-QuickSort produces the output 
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

Source


题意:求按冒泡升序排序的交换次数。

题解:按顺序依次插入树状数组里,每次统计a[i]前面有多少个数,然后ans+=i-num;

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#define N 5000010
#define ll long long

using namespace std;

int n;
struct node {
    int x;
    int num;
} a[N];
int bit[N];

bool cmp_1(node a,node b) {
    return a.x<b.x;
}

bool cmp_2(node a,node b) {
    return a.num<b.num;
}

int sum(int i) {
    int s=0;
    while(i>0) {
        s+=bit[i];
        i-=i&-i;
    }
    return s;
}

void add(int i,int x) {
    while(i<=n) {
        bit[i]+=x;
        i+=i&-i;
    }
}
int main() {
    //freopen("test.in","r",stdin);
    while(cin>>n&&n) {
        for(int i=1; i<=n; i++) {
            scanf("%d",&a[i].x);
            a[i].num=i;
        }
        sort(a+1,a+n+1,cmp_1);
        for(int i=1; i<=n; i++)//离散化
            a[i].x=i;
        sort(a+1,a+n+1,cmp_2);
        memset(bit,0,sizeof bit);
        ll ans=0;
        for(int i=1; i<=n; i++) {
            ans+=i-sum(a[i].x)-1;
            add(a[i].x,1);
        }
        printf("%lld\n",ans);
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

[树状数组]POJ 2299 Ultra-QuickSort

传送门:Ultra-QuickSort Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K T...

POJ:2299 Ultra-QuickSort(归并排序/树状数组)

要移动元素的次数实质就是逆序对数。 这个在入门经典上有详细解释,归并排序一改就ok了。 这里我们首先应该明确一个问题,前后两段内部的元素位置并不影响两个分别来自前后两段元素的逆序性,简单点说,a来...
  • kkkwjx
  • kkkwjx
  • 2013年08月06日 13:49
  • 541

POJ 2299 Ultra-QuickSort 树状数组

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 52835 ...

POJ 2299 Ultra-QuickSort(逆序数 树状数组)

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 45960 ...

POJ 2299 Ultra-QuickSort 【归并排序求逆序数 OR 树状数组求逆序数】

PKU2299 Ultra-QuickSort 【归并排序求逆序数 OR 树状数组求逆序数】

poj2299 Ultra-QuickSort 树状数组 + 离散化

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 56422 ...

POJ 2299 Ultra-QuickSort(树状数组求逆序对)

aaa

poj2299:Ultra-QuickSort(树状数组+离散化)

Description In this problem, you have to analyze a particular sorting algorithm. The algorithm proc...

POJ 2299 Ultra-QuickSort(归并排序·树状数组·逆序对)

题意  给你一个数组求其中逆序对(ia[j]) 的个数  我们来看一个归并排序的过程: 给定的数组为[2, 4, 5, 3, 1],二分后的数组分别为[2, 4, 5], [1, 3],假设我们已...
  • acvay
  • acvay
  • 2015年04月10日 20:27
  • 583

POJ 2299 Ultra-QuickSort 求逆序对数(归并排序,树状数组)

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 36281 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 2299 Ultra-QuickSort(树状数组)
举报原因:
原因补充:

(最多只允许输入30个字)