关闭

hdu 1081 To The Max(最大子矩阵)

标签: hdu 1081 To The Max最大子矩阵
273人阅读 评论(0) 收藏 举报
分类:

To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10238    Accepted Submission(s): 4928


Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.
 

Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
 

Output
Output the sum of the maximal sub-rectangle.
 

Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
 

Sample Output
15
 

Source
 


#include<cstring>
#include<cstdio>
#include<iostream>
#define N 111
#define INF 1e8

using namespace std;

int sum[N][N];
int n;

int main() {
    //freopen("test.in","r",stdin);
    while(~scanf("%d",&n)) {
        memset(sum,0,sizeof sum);
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++) {
                int x;
                scanf("%d",&x);
                sum[i][j]=sum[i][j-1]+x;
            }
        int ans=-INF;
        for(int l=1; l<=n; l++) {
            for(int r=l; r<=n; r++) {
                int all=0;
                for(int i=1; i<=n; i++) {
                    all+=sum[i][r]-sum[i][l-1];
                    ans=max(ans,all);
                    if(all<0)all=0;
                }
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:151529次
    • 积分:4410
    • 等级:
    • 排名:第7037名
    • 原创:294篇
    • 转载:16篇
    • 译文:0篇
    • 评论:13条
    文章分类
    最新评论