关闭

Hdu 5314 Happy King(求树上多少个点对(u,v)满足u到v的路径上点权值最大值减最小值不大于给定的K)

367人阅读 评论(0) 收藏 举报
分类:

传送门:Hdu 5314 Happy King


题意:
给定N个点的树,点有权值,求多少个点对(u,v)满足u到v的路径上点权值最大值减最小值不大于给定的K


思路:
将点对分成经过根的和不经过根的,进行分治
每一次分治都维护点到根的最大值和最小值就可以了,
处理完一个子树的时候,利用容斥+二分查找左右范围就可以了
(路径上两点的较小值是两点到根较小的那个,较大值为两点到根较大的)


#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf -0x3f3f3f3f
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define MP(x,y) make_pair(x,y)
typedef long long ll;
void fre() { freopen("input.in", "r", stdin); freopen("output.out", "w", stdout); }
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
typedef pair<int,int>PI;
const int maxn=100100;
const int MAXM=2*maxn;
vector<int>G[maxn];
int dis[maxn],k,size[maxn],f[maxn],Count,root,a[maxn];//Count表示当前子树的结点的总个数
bool Del[maxn];
long long ans=0;
struct node{
    int _min,_max;
    bool operator < (const node& a)  const{
        return a._min==_min ? _max<a._max : _min<a._min;
    }
}P[maxn];
int C[maxn],cnt;

struct Edge{
    int to,next;
}e[MAXM];
int tot,head[maxn];

void init(){
    tot=0;
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v){
    e[tot].to=v;
    e[tot].next=head[u];
    head[u]=tot++;
}

void getroot(int u,int pre){
    size[u]=1,f[u]=0;
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(v!=pre && !Del[v]){
            getroot(v,u);
            size[u]+=size[v];
            f[u]=max(f[u],size[v]);
        }
    }
    f[u]=max(f[u],Count-size[u]);
    if(f[u]<f[root])    root=u;
}

void getdep(int u,int pre,int _min,int _max){ //这里还需要重新计算每个子树的size
    _min=min(a[u],_min),_max=max(a[u],_max);
    if(_min+k>=_max)
        P[++cnt]=(node){_min,_max};
    size[u]=1;
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(v!=pre && !Del[v]){
            getdep(v,u,_min,_max);
            size[u]+=size[v];
        }
    }
}

void add(int x,int add,int m){
    while(x<=m)
        C[x]+=add,x+=(x&-x);
}

int sum(int x){
    int ret=0;
    while(x>0)
        ret+=C[x],x-=(x&-x);
    return ret;
}

long long cal(int u,int _min,int _max){
    cnt=0;
    getdep(u,0,_min,_max);
    sort(P+1,P+cnt+1);
    long long ret=0;
    for(int i=cnt;i>=1;i--){    //最小值为P[i]._min,最大值大于等于P[i]._min,小于等于P[i]._min+k
        int num=lower_bound(P+1,P+i,(node){P[i]._max-k,0})-P; //后面的最大值一定比P[i]._minv大
        ret+=(i-num);
    }
    return ret;
}

void work(int u){
    ans+=cal(u,INF,-INF);
    Del[u]=true;
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(!Del[v]){
            ans-=cal(v,a[u],a[u]);
            f[0]=Count=size[v];
            getroot(v,root=0);
            work(root);
        }
    }
}

int main(){
    int n,_;
    scanf("%d",&_);
    while(_--){
        scanf("%d%d",&n,&k);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        init();
        int u,v,w;
        for(int i=1;i<n;i++){
            scanf("%d%d",&u,&v);
            addedge(u,v),addedge(v,u);
        }
        ans=0;
        f[0]=Count=n;
        getroot(1,root=0);
        memset(Del,false,sizeof(Del));
        work(root);
        printf("%lld\n",ans*2);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:103302次
    • 积分:4391
    • 等级:
    • 排名:第7081名
    • 原创:354篇
    • 转载:8篇
    • 译文:0篇
    • 评论:17条
    最新评论