Hdu 4918 Query on the subtree(一棵树,两种操作,一种是将某个点的权值修改为v,另一种是查询距离点u不超过d的点的权值和。)

原创 2016年08月30日 20:59:19

传送门:Hdu 4918 Query on the subtree


题意:给出一颗n个点的树,每个点有一个权值,有两种操作,一种是将某个点的权值修改为v,另一种是查询距离点u不超过d的点的权值和。


思路:
最多有logn层的子树
对于每个点,最多属于logn个子树,那么我们可以预处理出每个点属于哪些重心以及到这些重心的距离,以每个重心建立树状数组,
每个点按照到不同重心的距离插入到不同的树状数组中,然后利用树状数组的前缀和查询到u距离不超过d的点的和

假设一个重心x到u的距离为dis,那么便统计到重心x距离不超过d-dis的点的个数。但是可能两个重心之间的点是有重复的,我们还需要维护每个点的子节点的树状数组
空间复杂度:2*nlogn,时间复杂度nlognlongn


拓展:由于重心的特殊性质,还可以嵌套其他数据结构完成

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
using namespace std;
const int N=1e5+5;
bool Del[N];
int f[N],root,size[N],Count,idx[N],cur;
int pre[N],dis[N],a[N],n;

struct node{
    int root,subroot,next,dis;
}C[N*20];
int TOT,Head[N*20];

void addnode(int u,int root,int subroot,int dis){
    C[TOT].root=root;
    C[TOT].subroot=subroot;
    C[TOT].next=Head[u];
    C[TOT].dis=dis;
    Head[u]=TOT++;
}

struct Edge{
    int to,next;
}e[N*2];
int tot,head[N];

void init(){
    tot=cur=TOT=0;
    memset(Head,-1,sizeof(Head));
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v){
    e[tot].to=v;
    e[tot].next=head[u];
    head[u]=tot++;
}

struct Tree{
    int n;
    vector<int> T;
    void init(int size){
        T.clear();
        n=size;
        for(int i=0;i<=n;i++)
            T.push_back(0);
    }

    void add(int x,int v){
        while(x<=n)
            T[x]+=v,x+=(x&-x);
    }

    int sum(int x){
        x=min(x,n);
        int ret=0;
        while(x>0)
            ret+=T[x],x-=(x&-x);
        return ret;
    }
}T[N*10];

void getroot(int u,int pre){
    f[u]=0,size[u]=1;
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(v!=pre&&!Del[v]){
            getroot(v,u);
            size[u]+=size[v],f[u]=max(f[u],size[v]);
        }
    }
    f[u]=max(f[u],Count-size[u]);
    if(f[u]<f[root])
        root=u;
}

void getdeep(int u,int pre,int dep,int root,int subroot){
    T[root].add(dep+1,a[u]);
    T[subroot].add(dep+1,a[u]);
    addnode(u,root,subroot,dep+1);
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(v==pre||Del[v])
            continue;
        getdeep(v,u,dep+1,root,subroot);
    }
}

void dfs(int u,int pre){
    size[u]=1;
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(v!=pre&& !Del[v]){
            dfs(v,u);
            size[u]+=size[v];
        }
    }
}

void work(int u,int siz){
    idx[u]=++cur;
    Del[u]=true;
    T[cur].init(siz+1);
    T[cur].add(1,a[u]);
    addnode(u,idx[u],0,1);
    dfs(u,0);
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(!Del[v]){
            ++cur;
            T[cur].init(size[v]+1);
            getdeep(v,u,1,idx[u],cur);
        }
    }
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(!Del[v]){
            f[0]=Count=size[v];
            getroot(v,root=0);
            work(root,size[v]);
        }
    }
}

char s[2];

int main(){
    int m,u,v,x,d;
    while(scanf("%d%d",&n,&m)!=EOF){
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        init();
        memset(Del,false,sizeof(Del));
        for(int i=1;i<n;i++){
            scanf("%d%d",&u,&v);
            addedge(u,v),addedge(v,u);
        }
        f[0]=Count=n;
        getroot(1,root=0);
        work(root,n);
        for(int i=1;i<=m;++i){
            scanf("%s%d%d",s,&x,&d);
            if(s[0]=='?'){
                int ans=0;
                for(int i=Head[x];i!=-1;i=C[i].next){
                    ans+=T[C[i].root].sum(d-C[i].dis+2);
                    if(C[i].subroot)
                        ans-=T[C[i].subroot].sum(d-C[i].dis+2);
                }
                printf("%d\n",ans);
            }
            else{
                for(int i=Head[x];i!=-1;i=C[i].next){
                    T[C[i].root].add(C[i].dis,d-a[x]);
                    if(C[i].subroot)
                        T[C[i].subroot].add(C[i].dis,d-a[x]);
                }
                a[x]=d;
            }
        }
    }
    return 0;
}
版权声明: ˋ( ° ▽、° )  ̄へ ̄

Codeforces Round #169 (Div. 2) E. Little Girl and Problem on Trees(给出一棵树,对距离某个点d范围之内的所有点+x,查询某个点的值)

E. Little Girl and Problem on Trees time limit per test 2 seconds memory limit per test ...

hdu 4918 Query on the subtree (动态点分治+动态开点+线段树)

题目描述传送门题目大意:一棵n个节点的树,每个节点有一个权值val 操作1:修改点x的权值 操作2:查询与x的距离小于等于d的节点的权值和。题解如果修改的话应该有很多种做法的。 首先建立重心树,...

【HDU】4918 Query on the subtree 点分治+树状数组

【HDU】4918 Query on the subtree 点分治+树状数组

hdu 4918 Query on the subtree(树分治 + 树状数组)

题意:给出一颗n个
  • qian99
  • qian99
  • 2014年09月17日 21:33
  • 1459

Hdu 5314 Happy King(求树上多少个点对(u,v)满足u到v的路径上点权值最大值减最小值不大于给定的K)

传送门:Hdu 5314 Happy King 题意: 给定N个点的树,点有权值,求多少个点对(u,v)满足u到v的路径上点权值最大值减最小值不大于给定的K 思路: 将点对分成经过根的...

HDU 4918 Query on the subtree

Description bobo has a tree, whose vertices are conveniently labeled by 1,2,…,n. At the very begi...

hdu4003 2011大连赛区网赛1003一棵树,K个机器人遍历所有结点所需的最少权值和

/* 题意:一棵有权树,从根结点中放入K个机器人,求用这K个机器人遍历所有的结点最少的权值和 分析:dp[i][j]表示对于以i结点为根结点的子树,放j个机器人所需要的权值和。 当j...

HDU 3966 (树链剖分对点权值,模板)

Our protagonist is the handsome human prince Aragorn comes from The Lord of the Rings. One day Arago...

HDU 2167 Pebbles_状压求点集的最大权值和

原题: Pebbles Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hdu 4918 Query on the subtree(一棵树,两种操作,一种是将某个点的权值修改为v,另一种是查询距离点u不超过d的点的权值和。)
举报原因:
原因补充:

(最多只允许输入30个字)