关闭

[Codeforces 719 E. Sasha and Array] 矩阵快速幂+线段树

标签: Matrix矩阵快速幂线段树模板
566人阅读 评论(0) 收藏 举报
分类:

[Codeforces 719 E. Sasha and Array] 矩阵快速幂+线段树

题目链接[Codeforces 719 E. Sasha and Array]
题意描述:给定N个数a1,a2,,an,有M次操作。
操作1:将连续区间aL,aL+1,,aR中的所有数字+x
操作2:对于连续区间aL,aL+1,,aR,求i=Ri=LFibo(ai)mod109+7
其中,Fibo(x)表示的是求第x个的Fibonacci 数。(1n100000,1m100000,1ai109)
解题思路:如果已知Fibo(x0), 求Fibo(x0+x),那么直接可以用矩阵快速幂,乘上变换矩阵的(x1)次方。由于矩阵乘法具有结合律,即

AlB+Al+1B++ArB=(Al+Al+1++Ar)B
那么对于操作1,因此线段树更新的时候乘上矩阵B, 然后懒惰标记维护一个变换矩阵的乘积B即可。
贴一个矩阵模板。

#include <bits/stdc++.h>
using namespace std;

#define FIN             freopen("input.txt","r",stdin)
#define FOUT            freopen("output.txt","w",stdout)
#define lson            l, mid, (rt << 1)
#define rson            mid + 1, r, (rt << 1 | 1)
#define __mid__         int mid = (l + r) >> 1

typedef __int64 LL;

const int MAXN = 100000 + 5;
const int MOD = 1e9 + 7;

int N, M, tp, L, R, X;

struct Mat {
    static const int MX = 2;
    int v[MX][MX];
    void O() {
        memset(v, 0, sizeof(v));
    }
    void E() {
        O();
        for(int i = 0; i < MX; i++) v[i][i] = 1;
    }
    Mat operator + (const Mat& e) const {
        Mat ret; ret.O();
        for(int i = 0; i < MX; i++) {
            for(int j = 0; j < MX; j++) {
                ret.v[i][j] = ((LL)v[i][j] + e.v[i][j]) % MOD;
            }
        }
        return ret;
    }
    Mat operator - (const Mat& e) const {
        Mat ret; ret.O();
        for(int i = 0; i < MX; i++) {
            for(int j = 0; j < MX; j++) {
                ret.v[i][j] = ((LL)v[i][j] - e.v[i][j] + MOD) % MOD;
            }
        }
        return ret;
    }
    Mat operator * (const Mat& e) const {
        Mat ret; ret.O();
        for(int k = 0; k < MX; k++) {
            for(int i = 0; i < MX; i++) {
                if(v[i][k] == 0) continue;
                for(int j = 0; j < MX; j++) {
                    ret.v[i][j] = (ret.v[i][j] + (LL) v[i][k] * e.v[k][j]) % MOD;
                }
            }
        }
        return ret;
    }
    Mat operator ^ (int b) const {
        Mat a, ret; ret.E();
        memcpy(a.v, v, sizeof(v));
        while(b > 0) {
            if(b & 1) ret = ret * a;
            a = a * a;
            b >>= 1;
        }
        return ret;
    }
} ini, tra, mat;

struct Seg {
    Mat sum, tag;
    bool col;
} seg[MAXN * 3];
inline void pushUp(int rt) {
    seg[rt].sum = seg[rt << 1].sum + seg[rt << 1 | 1].sum;
}
inline void down(int rt, int fa) {
    seg[rt].col = seg[fa].col;
    seg[rt].sum = seg[fa].tag * seg[rt].sum;
    seg[rt].tag = seg[fa].tag * seg[rt].tag;
}
inline void pushDown(int rt) {
    if(seg[rt].col) {
        down(rt << 1, rt);
        down(rt << 1 | 1, rt);
        seg[rt].tag.E();
        seg[rt].col = false;
    }
}
void build(int l, int r, int rt) {
    seg[rt].tag.E();
    seg[rt].col = false;
    if(l == r)  {
        scanf("%d", &X);
        mat = tra ^ (X - 1);
        seg[rt].sum = mat * ini;
        return;
    }
    __mid__;
    build(lson);
    build(rson);
    pushUp(rt);
}
void update(int l, int r, int rt) {
    if(L <= l && r <= R) {
        seg[rt].sum = mat * seg[rt].sum;
        seg[rt].tag = mat * seg[rt].tag;
        seg[rt].col = true;
        return;
    }
    __mid__;
    pushDown(rt);
    if(L <= mid) update(lson);
    if(R > mid) update(rson);
    pushUp(rt);
}
int query(int l, int r, int rt) {
    if(L <= l && r <= R) {
        return seg[rt].sum.v[0][0];
    }
    __mid__;
    pushDown(rt);
    int ret = 0;
    if(L <= mid) ret = query(lson);
    if(R > mid) ret += query(rson);
    return ret % MOD;
}

int main() {
#ifndef ONLINE_JUDGE
    FIN;
#endif // ONLINE_JUDGE
    ini.v[0][0] = 1, ini.v[0][1] = 0;
    ini.v[1][0] = 0, ini.v[1][1] = 0;
    tra.v[0][0] = 1, tra.v[0][1] = 1;
    tra.v[1][0] = 1, tra.v[1][1] = 0;
    scanf("%d %d", &N, &M);
    build(1, N, 1);
    while(M --) {
        scanf("%d %d %d", &tp, &L, &R);
        if(tp == 1) {
            scanf("%d", &X);
            mat = tra ^ X;  /// 因为把这个写在update里面,TLE了好几发...
            update(1, N, 1);
        } else {
            printf("%d\n", query(1, N, 1));
        }
    }
    return 0;
}
2
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

【CodeForces 719E】【线段树+矩阵快速幂】 Sasha and Array

传送门:E. Sasha and Array 描述: E. Sasha and Array time limit per test 5 seconds memory ...
  • guhaiteng
  • guhaiteng
  • 2016-10-04 22:16
  • 171

CodeForces 719E Sasha and Array 【线段树】【快速矩阵幂】

题目:点击打开链接 题意:给出有n个元素的数列ai(1 分析:容易想到用快速矩阵幂求斐波那契数列,同时用线段树储存和矩阵以及lazy矩阵,如果lazy标记为指数的话每次更新都要用一遍快速矩阵幂,就...
  • pan1197349032
  • pan1197349032
  • 2016-11-17 20:22
  • 107

E. Sasha and Array——矩阵+线段树

E.Sasha and Array 很神奇的一道题 题意大概就是支持区间加,然后求区间和。。。 区间和的求法是 sigema(i,l,r) f[i]  f[i]表示斐波那契序列第i项 例如一个区间的数...
  • Fop_zz
  • Fop_zz
  • 2017-06-15 10:15
  • 135

AC自动机+矩阵快速幂 HDU 2243

做这个题之前最好做一下POJ 2278(题解) 在POJ2278的基础上, 最终的答案就是26^1+26^2+......+26^L减去A^1+A^2+....+A^L 我们构造这么一个矩阵 |A...
  • Runner__
  • Runner__
  • 2016-05-13 13:00
  • 325

[Codeforces 697F] Legen... (AC自动机+取max的矩阵快速幂)

Codeforces - 697F 构造一个长度为 ll的串,其中每包含一个第 ii个单词,能获得 aia_i的价值 单词可重复,也可相互覆盖,问最大价值是多少 一看就是AC自动机,但是 l...
  • u012015746
  • u012015746
  • 2016-07-16 21:36
  • 279

Codeforces 696D Legen...(AC自动机+矩阵快速幂)

http://codeforces.com/problemset/problem/696/D题意:给你n个串,每个串有个开心值,然后让你构造一个长为l的串,使得开心值之和最大。 题解:AC自动机处理...
  • Miracle_ma
  • Miracle_ma
  • 2016-07-29 14:57
  • 623

矩阵快速幂总结

矩阵快速幂 基础知识:(会基础的直接看应用部分) (1) 矩阵乘法 简单的说矩阵就是二维数组,数存在里面,矩阵乘法的规则:A*B=C 其中c[i][j]为A的第i行与B的第j列对应乘积的和,即: ...
  • wust_zzwh
  • wust_zzwh
  • 2016-11-25 15:40
  • 8116

【Codeforces 718C&719E】Sasha and Array【线段树成段更新+矩阵快速幂】

题意:给你一个数列,有两种操作1 l r x 给[l,r]区间上的数加上x, 2 l r 询问[l,r]区间fibonacci数列的和(f[l]+f[l+1]+……f[r]) 题解:这样的区间加和区间...
  • sjtsjt709
  • sjtsjt709
  • 2016-10-04 16:57
  • 356

算法学习 - 快速幂和矩阵快速幂(复杂度Olog(n))C++实现

快速幂 快速幂顾名思义,就是快速算某个数的多少次幂。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高。 快速幂实现原理 快速幂的原理比较好懂,就是说假如我们...
  • chenfs1992
  • chenfs1992
  • 2014-12-24 22:51
  • 7743

POJ3070矩阵快速幂求Fib

欲哭无泪。。。。。比赛的时候都敲不出来。。 Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Tota...
  • u012350533
  • u012350533
  • 2013-10-08 23:50
  • 931
    个人资料
    • 访问:294867次
    • 积分:5763
    • 等级:
    • 排名:第5246名
    • 原创:273篇
    • 转载:8篇
    • 译文:0篇
    • 评论:44条
    友情链接
    最新评论