[Codeforces 719 E. Sasha and Array] 矩阵快速幂+线段树

原创 2016年09月28日 20:05:28

[Codeforces 719 E. Sasha and Array] 矩阵快速幂+线段树

题目链接[Codeforces 719 E. Sasha and Array]
题意描述:给定N个数a1,a2,,an,有M次操作。
操作1:将连续区间aL,aL+1,,aR中的所有数字+x
操作2:对于连续区间aL,aL+1,,aR,求i=Ri=LFibo(ai)mod109+7
其中,Fibo(x)表示的是求第x个的Fibonacci 数。(1n100000,1m100000,1ai109)
解题思路:如果已知Fibo(x0), 求Fibo(x0+x),那么直接可以用矩阵快速幂,乘上变换矩阵的(x1)次方。由于矩阵乘法具有结合律,即

AlB+Al+1B++ArB=(Al+Al+1++Ar)B
那么对于操作1,因此线段树更新的时候乘上矩阵B, 然后懒惰标记维护一个变换矩阵的乘积B即可。
贴一个矩阵模板。

#include <bits/stdc++.h>
using namespace std;

#define FIN             freopen("input.txt","r",stdin)
#define FOUT            freopen("output.txt","w",stdout)
#define lson            l, mid, (rt << 1)
#define rson            mid + 1, r, (rt << 1 | 1)
#define __mid__         int mid = (l + r) >> 1

typedef __int64 LL;

const int MAXN = 100000 + 5;
const int MOD = 1e9 + 7;

int N, M, tp, L, R, X;

struct Mat {
    static const int MX = 2;
    int v[MX][MX];
    void O() {
        memset(v, 0, sizeof(v));
    }
    void E() {
        O();
        for(int i = 0; i < MX; i++) v[i][i] = 1;
    }
    Mat operator + (const Mat& e) const {
        Mat ret; ret.O();
        for(int i = 0; i < MX; i++) {
            for(int j = 0; j < MX; j++) {
                ret.v[i][j] = ((LL)v[i][j] + e.v[i][j]) % MOD;
            }
        }
        return ret;
    }
    Mat operator - (const Mat& e) const {
        Mat ret; ret.O();
        for(int i = 0; i < MX; i++) {
            for(int j = 0; j < MX; j++) {
                ret.v[i][j] = ((LL)v[i][j] - e.v[i][j] + MOD) % MOD;
            }
        }
        return ret;
    }
    Mat operator * (const Mat& e) const {
        Mat ret; ret.O();
        for(int k = 0; k < MX; k++) {
            for(int i = 0; i < MX; i++) {
                if(v[i][k] == 0) continue;
                for(int j = 0; j < MX; j++) {
                    ret.v[i][j] = (ret.v[i][j] + (LL) v[i][k] * e.v[k][j]) % MOD;
                }
            }
        }
        return ret;
    }
    Mat operator ^ (int b) const {
        Mat a, ret; ret.E();
        memcpy(a.v, v, sizeof(v));
        while(b > 0) {
            if(b & 1) ret = ret * a;
            a = a * a;
            b >>= 1;
        }
        return ret;
    }
} ini, tra, mat;

struct Seg {
    Mat sum, tag;
    bool col;
} seg[MAXN * 3];
inline void pushUp(int rt) {
    seg[rt].sum = seg[rt << 1].sum + seg[rt << 1 | 1].sum;
}
inline void down(int rt, int fa) {
    seg[rt].col = seg[fa].col;
    seg[rt].sum = seg[fa].tag * seg[rt].sum;
    seg[rt].tag = seg[fa].tag * seg[rt].tag;
}
inline void pushDown(int rt) {
    if(seg[rt].col) {
        down(rt << 1, rt);
        down(rt << 1 | 1, rt);
        seg[rt].tag.E();
        seg[rt].col = false;
    }
}
void build(int l, int r, int rt) {
    seg[rt].tag.E();
    seg[rt].col = false;
    if(l == r)  {
        scanf("%d", &X);
        mat = tra ^ (X - 1);
        seg[rt].sum = mat * ini;
        return;
    }
    __mid__;
    build(lson);
    build(rson);
    pushUp(rt);
}
void update(int l, int r, int rt) {
    if(L <= l && r <= R) {
        seg[rt].sum = mat * seg[rt].sum;
        seg[rt].tag = mat * seg[rt].tag;
        seg[rt].col = true;
        return;
    }
    __mid__;
    pushDown(rt);
    if(L <= mid) update(lson);
    if(R > mid) update(rson);
    pushUp(rt);
}
int query(int l, int r, int rt) {
    if(L <= l && r <= R) {
        return seg[rt].sum.v[0][0];
    }
    __mid__;
    pushDown(rt);
    int ret = 0;
    if(L <= mid) ret = query(lson);
    if(R > mid) ret += query(rson);
    return ret % MOD;
}

int main() {
#ifndef ONLINE_JUDGE
    FIN;
#endif // ONLINE_JUDGE
    ini.v[0][0] = 1, ini.v[0][1] = 0;
    ini.v[1][0] = 0, ini.v[1][1] = 0;
    tra.v[0][0] = 1, tra.v[0][1] = 1;
    tra.v[1][0] = 1, tra.v[1][1] = 0;
    scanf("%d %d", &N, &M);
    build(1, N, 1);
    while(M --) {
        scanf("%d %d %d", &tp, &L, &R);
        if(tp == 1) {
            scanf("%d", &X);
            mat = tra ^ X;  /// 因为把这个写在update里面,TLE了好几发...
            update(1, N, 1);
        } else {
            printf("%d\n", query(1, N, 1));
        }
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

CodeForces-719E Sasha and Array(线段树+矩阵快速幂)

E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes ...

CodeForces - 719E Sasha and Array 线段树 + 矩阵快速幂

传送门:CF 719 E题解 区间更新 注意这里节点是矩阵, 所以初始化要是E 矩阵结合律 + Fibo la表示lazy不过这里是矩阵, 所以初始是E, sum是区间的ans...
  • ADjky
  • ADjky
  • 2016年12月09日 23:05
  • 214

[codeforces] 719E Sasha and Array 线段树+快速斐波那契

Description Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. Ther...

CodeForces 718C Sasha and Array(矩阵类+线段树)

虽然说矩阵快速幂不是本题的主要算法,但在这题却发挥着举足轻重的作用。         大致题意就是,给出一组数列,有区间加和区间求和两种操作。但是不同的是,这里的求和不是单纯的数字相加,而是Fibon...

Codeforces719E 矩阵乘法+线段树

Codeforces 719E 矩阵乘法+线段树题目大意:给定一个数列,请完成下面的两种操作1.1 1 r z [l,r][l,r]区间加上一个数zz2.2 l r 查询[l,r][l,r] 区...

Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo(矩阵快速幂)

题意:主角可以从 (0, 0)走到(x + 1, y + 1), (x + 1, y), 或者 (x + 1, y - 1)。有k个区间完全覆盖0到k,每个区间有一个值c[i],当x在一个区间内时...

矩阵快速幂DP Darth Vader and Tree : CodeForces - 514E

题目:CodeForces - 514Etime limit per test2 seconds memory limit per test256 megabytes When Darth Vad...

Codeforces 514E Darth Vader and Tree DP + 矩阵快速幂

题目大意: 给定n和x, (n 大致思路: 思路写在代码注释里了 代码如下: Result  :  Accepted     Memory  :  852 KB     T...

Codeforces Round #341 (Div. 2) E. Wet Shark and Blocks(dp + 矩阵快速幂)

题意: 给定b≤109块数字,每块有n≤105个数字,现在从每块选一个拼出一个大数给定b\le 10^9块数字, 每块有n\le10^5个数字, 现在从每块选一个拼出一个大数 求这个大数MO...
  • lwt36
  • lwt36
  • 2016年02月01日 15:19
  • 360

Codeforces #341 div 2 E. Wet Shark and Blocks(矩阵快速幂)

题目链接: http://codeforces.com/contest/621/problem/E 题目大意: 给b个block,每个block有n个数,现在从每个block里面选一个数然后...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[Codeforces 719 E. Sasha and Array] 矩阵快速幂+线段树
举报原因:
原因补充:

(最多只允许输入30个字)