BZOJ 2527 [Poi2011]Meteors [整体二分+线段树]

14 篇文章 0 订阅
2 篇文章 0 订阅

题意:给你n个国家,m个观测点组成的环,每个观测点所属的国家,和每个国家所需要的陨石数,总共k波陨石向范围为(L,R)中的观测点提供a个陨石。问每个国家在第几波陨石降落的时候第一次获得所需要的陨石数量。

题解:整体二分法,类似于二分答案,每次将陨石波数二分为(L,mid)(mid+1,R),用线段树维护从第1波陨石到第mid波陨石降落时观测点陨石数量,(区间更新,单点查询),暴力判断当前mid波的陨石降落时是否能使这些国家集合满足需求,能满足要求的国家分到一组,不能满足需求则分到另一组,再分别继续进行二分陨石区间。

有一个坑点就是一个国家最多会得到(3*10^5)*(3*10^5)*10^9个陨石 爆long long = =(陨石波数*国家拥有观测点数*单次落下陨石数)

AC代码:

#include<stdio.h>
#include<vector>
#define N 300005
using namespace std;
typedef long long ll;
vector<ll>vt[N];
ll a[N];
ll need[N];
ll add[N*8];
ll ql[N],qr[N],qw[N];
ll ans[N];
ll q,n,m;
ll S[N],newS[N],pos;
void update(ll l,ll r,ll L,ll R,ll root,ll k)
{
	if(l<=L&&R<=r)
	{
		add[root]+=k;
		return ;
	}
	ll mid=L+R>>1;
	if(mid>=r)update(l,r,L,mid,root<<1,k);
	else if(mid<l)update(l,r,mid+1,R,root<<1|1,k);
	else 
	{
		update(l,mid,L,mid,root<<1,k);
		update(mid+1,r,mid+1,R,root<<1|1,k);
	}
}
ll query(ll x,ll L,ll R,ll root,ll ad)
{
	if(L==R)
		return ad+add[root];
	ll mid=L+R>>1;
	if(x<=mid)return query(x,L,mid,root<<1,ad+add[root]);
	else return query(x,mid+1,R,root<<1|1,ad+add[root]);
}
void solve(ll l,ll r,ll L,ll R)
{
	ll mid=l+r>>1;
	while(pos<=mid)
	{
		update(ql[pos],qr[pos],0,2*m-1,1,qw[pos]);
		pos++;
	}
	while(pos>=mid+2)
	{
		pos--;
		update(ql[pos],qr[pos],0,2*m-1,1,-qw[pos]);
	}
	if(l==r)
	{
		for(ll i=L;i<=R;i++)
		{
			ll sum=0;
			ll flag=1;
			for(ll j=0;j<vt[S[i]].size();j++)
			{
				ll to=vt[S[i]][j];
				sum+=query(to,0,2*m-1,1,0);
				sum+=query(to+m,0,2*m-1,1,0);
				if(sum>=need[S[i]])
				{
					flag=0;
					break;
				}
			}
			if(!flag)
				ans[S[i]]=l;
			else ans[S[i]]=-1;
		}
		return ;
	}
	ll l1=L-1,l2=R+1;
	for(ll i=L;i<=R;i++)
	{
		ll sum=0;
		ll flag=1;
		for(ll j=0;j<vt[S[i]].size();j++)
		{
			ll to=vt[S[i]][j];
			sum+=query(to,0,2*m-1,1,0);
			sum+=query(to+m,0,2*m-1,1,0);
			if(sum>=need[S[i]])
			{
				flag=0;
				break;
			}
		}
		if(!flag)
			newS[++l1]=S[i];
		else newS[--l2]=S[i];
	}
	for(ll i=L;i<=R;i++)
		S[i]=newS[i];
	if(l1!=L-1)solve(l,mid,L,l1);
	if(l2!=R+1)solve(mid+1,r,l2,R);
}
int main()
{
	scanf("%lld%lld",&n,&m);
	for(ll i=0;i<m;i++)
	{
		scanf("%lld",&a[i]);
		vt[a[i]-1].push_back(i);
	}
	for(ll i=0;i<n;i++)
		scanf("%lld",&need[i]);
	scanf("%lld",&q);
	for(ll i=0;i<q;i++)
	{
		scanf("%lld%lld%lld",&ql[i],&qr[i],&qw[i]);
		ql[i]--;qr[i]--;
		if(qr[i]<ql[i])qr[i]+=m;
	}
	pos=0;
	for(ll i=0;i<n;i++)S[i]=i;
	solve(0,q-1,0,n-1);
	for(ll i=0;i<n;i++)
	{
		if(ans[i]==-1)printf("NIE\n");
		else printf("%lld\n",ans[i]+1);
	}
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值