自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 资源 (5951)
  • 收藏
  • 关注

原创 Sql Sever系列设置编辑所有行

Sql Sever系列设置编辑所有行:          随着数据库表内容的增多,软件原设置“编辑前1000行”已经不能满足要求,下面以金蝶EAS数据库为例进行演示,具体的操作步骤如下: 1.登录数据库用户(window身份认证,sa或者其他用户身份认证均可)          此处以sa用户为例,可将sa的密码设置成NULL,之后登录便没必要填写密码了,操作如下: 2.修改编辑行

2017-07-19 12:54:14 1478

原创 解决Sql Sever2008安装后,连接EAS服务器出现端口不通问题

以win10 为例 第一步:打开window功能界面 点击所有程序,找到“Microsoft SQL Sever2008”,点击展开后找到“SQL Sever配置管理器”,左键点击打开 第二步:查看SQL Sever服务是否连接,如果未连接,查看“我的电脑 -> 右键 -> 管理 -> 服务 -> 找到其他版本的代理服务器” -> 终止服务(未连接一般是之前安装的版本未完全删

2017-07-11 17:41:43 1105

原创 金蝶EAS绿色客户端配置

绿色客户端 何谓绿色EAS客户端,就是一个EAS客户端,拷到哪里都可以运行,不需修改任何文件 制作方法如下: 1. 安装客户端 2. 修改配置文件 安装根目录\eas\client\bin\set-client-env.bat,修改部分如下(前两行内容) : SET EAS_HOME=%CD%/../../../eas SET JAVA_HOM

2017-07-11 17:11:48 3224

使用知识图谱,自然语言处理,卷积神经网络等技术,基于python语言,设计了一个数控领域故障诊断专家系统.zip

使用知识图谱,自然语言处理,卷积神经网络等技术,基于python语言,设计了一个数控领域故障诊断专家系统.zip

2024-09-17

一个基于图神经网络的强化学习网络资源分配模型.zip

一个基于图神经网络的强化学习网络资源分配模型.zip

2024-09-17

基于卷积神经网络的遥感图像分类.zip

基于卷积神经网络的遥感图像分类.zip

2024-09-17

基于图神经网络的切片级漏洞检测及解释方法.zip

基于图神经网络的切片级漏洞检测及解释方法.zip

2024-09-17

基于图神经网络的异构图表示学习和推荐算法研究.zip

基于图神经网络的异构图表示学习和推荐算法研究.zip

2024-09-17

基于卷积神经网络VGG垃圾图像分类.zip

基于卷积神经网络VGG垃圾图像分类.zip

2024-09-17

人工智能-预训练大语言模型-国内首个全参数训练的法律大模型 HanFei-1.0

HanFei-1.0(韩非)是国内首个全参数训练的法律大模型,参数量7b,主要功能包括:法律问答、多轮对话、撰写文章、检索(敬请期待)等。

2024-09-12

人工智能-预训练大语言模型-基于中文法律知识的大语言模型

LaWGPT 是一系列基于中文法律知识的开源大语言模型。 该系列模型在通用中文基座模型(如 Chinese-LLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。

2024-09-12

人工智能-预训练大语言模型-LexiLaw - 中文法律大模型

LexiLaw 是一个经过微调的中文法律大模型,它基于 ChatGLM-6B 架构,通过在法律领域的数据集上进行微调,使其在提供法律咨询和支持方面具备更高的性能和专业性。 该模型旨在为法律从业者、学生和普通用户提供准确、可靠的法律咨询服务。无论您是需要针对具体法律问题的咨询,还是对法律条款、案例解析、法规解读等方面的查询,LexiLaw 都能够为您提供有益的建议和指导。 同时,我们将分享在大模型基础上微调的经验和最佳实践,以帮助社区开发更多优秀的中文法律大模型,推动中文法律智能化的发展。

2024-09-12

人工智能-预训练大语言模型-ChatLaw:中文法律大模型

ChatLaw2-MoE Latest Version: Based on the InternLM architecture with a 4x7B Mixture of Experts (MoE) design. Specialization: Tailored for Chinese legal language processing、 ChatLaw-13B Demo Version: Built on the Ziya-LLaMA-13B-v1 model. Performance: Excels in general Chinese tasks but requires a larger model for complex legal QA. ChatLaw-33B Demo Version: Utilizes the Anima-33B model. Enhancements: Improved logical reasoning over the 13B version. Challenge: Occasionally defaults to English res

2024-09-12

人工智能-预训练大语言模型-SecGPT 网络安全大模型

SecGPT的愿景是将人工智能技术引入网络安全领域,以提高网络防御的效率和效果。其使命是推动网络安全智能化,为社会提供更安全的数字生活环境。 1. 漏洞分析: SecGPT可以与安全研究人员或开发团队进行多轮对话,共同分析和审查应用程序或系统中的潜在漏洞。它可以帮助识别和理解漏洞的性质、潜在影响以及可能的修复方法。 2. 溯源分析: 在网络入侵事件调查中,SecGPT可以与调查员合作,协助分析网络流量、日志和事件记录,以追踪攻击者的活动路径,从而支持安全溯源分析。 3. 流量分析: SecGPT可以分析网络流量数据,识别异常流量模式,帮助检测潜在的网络攻击或入侵行为,并提供应对这些行为的建议。

2024-09-12

人工智能-深度学习-基于Fasttext的中文医疗问答系统

基于知识图谱的中文医疗问答系统,通过爬虫工具从公开的医疗网站获取医疗知识并利用Neo4j图数据库构建知识图谱。问句意图利用Fasttext文本分类算法识别,并简单编写了一个槽位记忆功能辅助记住上下文信息,最后利用Django框架搭建了一个简单的前端对话界面。

2024-09-03

人工智能-问答系统-基于知识图谱的问答

基于知识图谱的问答

2024-08-29

人工智能-知识图谱-knowledge graph知识图谱,从零开始构建知识图谱

knowledge graph,从零开始构建知识图谱,涵盖基础知识、构建理论、构建实战,从理论到实现。

2024-08-29

人工智能-大语言模型-基于ChatGLM-6B的中文问诊模型

lora 显存 >= 13G (未量化版本) pip install deep_training cpm_kernels icetk transformers>=4.26.1 torch >= 1.12.0 (icetk依赖cpu版torch, 建议先安装icetk后安装gpu版torch) lora的finetune代码来自 https://github.com/ssbuild/chatglm_finetuning 对于fp16模型,直接使用Doctor_GLM/chat_lora.ipynb,由于官方更新了chatglm的权重,我们将老版权重放在了 old_pretrain_model 可以下载后解压到old_pretrain_model目录 量化的模型我们打了个包,使用方便,但是效果目前来看很成问题:INT4需要大约6G显存,INT8需要大约8G显存,在Doctor_GLM/chat_lora_quant.ipynb下使用

2024-08-05

人工智能-ChatGLM-基于中文医学知识的ChatGLM指令微调

交互式测试 在安装好环境后,即可进行交互式测试: python infer.py 数据集构建 我们采用了公开和自建的中文医学知识库,主要参考了cMeKG。 医学知识库围绕疾病、药物、检查指标等构建,字段包括并发症,高危因素,组织学检查,临床症状,药物治疗,辅助治疗等。知识库示例如下: {"中心词": "偏头痛", "相关疾病": ["妊娠合并偏头痛", "恶寒发热"], "相关症状": ["皮肤变硬", "头部及眼后部疼痛并能听到连续不断的隆隆声", "晨起头痛加重"], "所属科室": ["中西医结合科", "内科"], "发病部位": ["头部"]} 我们利用GPT3.5接口围绕医学知识库构建问答数据,设置了多种Prompt形式来充分利用知识。

2024-08-05

人工智能-ChatGLM-基于 PEFT 的高效 ChatGLM 微调

要求 Python 3.8+ 和 PyTorch 1.13.1+ Transformers、Datasets、Accelerate、PEFT 和 TRL Fire、protobuf、cpm-kernels 和 sentencepiece Jieba、Rouge-Chinese 和 NLTK(在评估中使用) gradio 和 matplotlib(用于 train_web.py) Uvicorn、FastAPI 和 SSE-Starlette(用于 api_demo.py) 还有强大的 GPU!

2024-08-05

人工智能-大语言模型-基于ChatGLM-6B + LoRA的Fintune方案

准备 显卡: 显存 >= 16G (最好24G或者以上) 环境: python>=3.8 cuda>=11.6, cupti, cuDNN, TensorRT等深度学习环境 pip3 install -r requirements.txt 其中requirements.txt中的安装包bitsandbytes 建议安装0.41.2.post2这个版本,以前的版本可能会提示报错: bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cget_col_row_stats 数据预处理 转化alpaca数据集为jsonl

2024-08-05

人工智能-循环神经网络-CNN-RNN中文文本分类,基于TensorFlow

环境 Python 2/3 (感谢howie.hu调试Python2环境) TensorFlow 1.3以上 numpy scikit-learn scipy 数据集 使用THUCNews的一个子集进行训练与测试,数据集请自行到THUCTC:一个高效的中文文本分类工具包下载,请遵循数据提供方的开源协议。 本次训练使用了其中的10个分类,每个分类6500条数据。

2024-08-05

人工智能-Transformer-Kaggle新赛(baseline)-基于BERT的fine-tuning方案+基于tenso

基于bert的验证集的结果: class precision recall f1-score 0 0.98 0.98 0.98 1 0.65 0.62 0.63 micro avg 0.96 0.96 0.96 macro avg 0.81 0.80 0.81 weighted avg 0.96 0.96 0.96 基于tensor2tensor的验证集结果: class precision recall f1-score 0 0.98 0.96 0.96 1 0.23 0.19 0.21 micro avg 0.92 0.92 0.92 macro avg 0.59 0.57 0.58 weighted avg 0.91 0.92 0.91

2024-07-27

基于SSD+Resnet+CTC的中文车牌检测识别.zip

人工智能-深度学习-残差神经网络

2024-09-23

基于Tensorflow使用两层神经网络,以及使用残差网络的方法.zip

人工智能-深度学习-残差神经网络

2024-09-23

基于残差神经网络的手势识别算法研究code.zip

人工智能-深度学习-残差神经网络

2024-09-23

基于Paddle框架的TinyYOLO人脸检测和ResNet表情识别.zip

人工智能-深度学习-残差神经网络

2024-09-23

基于ResNet-152的DANet网络.zip

人工智能-深度学习-残差神经网络

2024-09-23

基于pytorch实现多残差神经网络集成配置,实现分类神经网络.zip

人工智能-深度学习-残差神经网络

2024-09-23

人工智能-情感分析-多模态情感分析-基于BERT+ResNet的多种融合方法

本项目基于Hugging Face和torchvision实现,共有五种融合方法(2Naive 3Attention),在Models文件夹中查看 Requirements chardet==4.0.0 numpy==1.22.2 Pillow==9.2.0 scikit_learn==1.1.1 torch==1.8.2 torchvision==0.9.2 tqdm==4.63.0 transformers==4.18.0 pip install -r requirements.txt

2024-09-23

人工智能-图像识别-基于keras集成多种图像分类模型: VGG16、VGG19、InceptionV3、Xception等

the project apply the following models: VGG16 VGG19 InceptionV3 Xception MobileNet AlexNet LeNet ZF_Net ResNet18 ResNet34 ResNet50 ResNet101 ResNet152 DenseNet(dismissed this time) mnist_net TSL16

2024-09-23

基于知识图谱和循环神经网络的推荐系统.zip

基于知识图谱和循环神经网络的推荐系统.zip

2024-09-19

基于高阶邻居的图神经网络.zip

基于高阶邻居的图神经网络.zip

2024-09-19

基于图神经网络解决JSSP(job shop scheduling problem)问题.zip

基于图神经网络解决JSSP(job shop scheduling problem)问题.zip

2024-09-19

基于卷积神经网络的红外图像非均匀性校正.zip

基于卷积神经网络的红外图像非均匀性校正.zip

2024-09-19

基于深度堆叠卷积神经网络的图像融合.zip

基于深度堆叠卷积神经网络的图像融合.zip

2024-09-19

Pytorch-基于GCNGATChebnet图神经网络实现的交通流预测.zip

图神经网络

2024-09-19

基于卷积神经网络(CNN)和CIFAR10数据集的图像智能分类 Web 应用.zip

图神经网络

2024-09-19

一个基于预训练的句向量生成工具.zip

一个基于预训练的句向量生成工具.zip

2024-09-19

基于预训练模型 BERT 的阅读理解.zip

基于预训练模型 BERT 的阅读理解.zip

2024-09-19

基于Bert进行知识蒸馏的预训练语言模型.zip

基于Bert进行知识蒸馏的预训练语言模型.zip

2024-09-19

基于预训练模型(BERT,BERT-wwm)的文本分类模板,CCF BDCI新闻情感分析A榜42735.zip

基于预训练模型(BERT,BERT-wwm)的文本分类模板,CCF BDCI新闻情感分析A榜42735.zip

2024-09-19

使用Flask+Keras部署的基于Xception神经网络的细胞图像AI医疗辅助识别系统.zip

使用Flask+Keras部署的基于Xception神经网络的细胞图像AI医疗辅助识别系统.zip

2024-09-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除