范数、奇异值

原创 2015年07月08日 16:44:00

【范数】
格式:n=norm(A,p)
功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数
以下是Matlab中help norm 的解释
NORM Matrix or vector norm.
For matrices…
NORM(X) is the largest singular value of X, max(svd(X)).
NORM(X,2) is the same as NORM(X).
NORM(X,1) is the 1-norm of X, the largest column sum,
= max(sum(abs(X))).
NORM(X,inf) is the infinity norm of X, the largest row sum,
= max(sum(abs(X’))).
NORM(X,’fro’) is the Frobenius norm, sqrt(sum(diag(X’*X))).
NORM(X,P) is available for matrix X only if P is 1, 2, inf or ‘fro’.
For vectors…
NORM(V,P) = sum(abs(V).^P)^(1/P).
NORM(V) = norm(V,2).
NORM(V,inf) = max(abs(V)).
NORM(V,-inf) = min(abs(V)).
1、如果A为矩阵
n=norm(A) ,返回A的最大奇异值,即max(svd(A))
n=norm(A,p) ,根据p的不同,返回不同的值
p 返回值
1 返回A中最大一列和,即max(sum(abs(A)))
2 返回A的最大奇异值,和n=norm(A)用法一样
inf 返回A中最大一行和,即max(sum(abs(A’)))
fro’ 返回A和A‘的积的对角线和的平方根,即sqrt(sum(diag(A’*A)))

2、如果A为向量
norm(A,p) 返回向量A的p范数。即返回 sum(abs(A).^p)^(1/p),对任意p大于1小于正无穷;
norm(A) 返回向量A的2范数,即等价于norm(A,2),即sum(abs(A).^2)^(1/2)
norm(A,inf) 返回max(abs(A))
norm(A,-inf) 返回min(abs(A))
【奇异值】
格式:[U,S,V] = svd(X)
解释: [U,S,V] = svd(X) produces a diagonal matrix S of the same dimension as X, with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that X = U*S*V’.
假设X为mn矩阵,则S为奇异值矩阵,它为m*n阶对角矩阵,其对角线上的值为X^* X的非负特征值的算术平方根;U为m*m阶酉矩阵,它是X*X^(X的共轭转置)的特征向量;V为n*n阶酉矩阵,它是X^(X的共轭转置)* X的特征向量;

奇异值差分谱

  • 2016年11月19日 10:15
  • 578B
  • 下载

SVD(奇异值分解)及求解最小二乘问题

1. SVD 任意矩阵A (mxn), 都能被奇异值分解为: 其中, U是mxm的正交矩阵, V是nxn的正交矩阵, Σr是由r个沿对角线从大到小排列的奇异值组成的方阵. r就是矩...
  • hongqiang200
  • hongqiang200
  • 2014年07月31日 21:47
  • 6529

特征值和奇异值(svd)

版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheel...
  • u012380663
  • u012380663
  • 2014年07月03日 10:39
  • 1944

几种常用的矩阵范数

按道理讲,这些东西应该熟记于心的。但是自己真心不喜欢记这种东西,看到一个总结不错的博客,转载过来以便于自己查看把!原文 1. 几种范数 矩阵 X∈Rm×nX∈Rm×n,σi(X)σi(...
  • jzwong
  • jzwong
  • 2017年05月04日 16:27
  • 1600

简述矩阵的特征值、奇异值、可对角化

浏览器放大至1.5倍效果最佳!如果需要清晰的PDF版本, 请点击下载链接: http://download.csdn.net/detail/meilikafei/9867628...
  • meilikafei
  • meilikafei
  • 2017年06月11日 11:42
  • 439

小论线性变换

线性变换
  • Young_Gy
  • Young_Gy
  • 2015年11月26日 17:41
  • 1415

机器学习之奇异值分解基础(SVD)

第一次写博客,感觉       时间如白驹过隙,研究SVD(奇异值分解)已经一个月了,总算是做出了一个SVD,也就只是做出了一个SVD。毕竟这其中涉及之众多问题非我现阶段所能解决,不过问题与其中的实...
  • LZL939899727
  • LZL939899727
  • 2014年05月09日 14:19
  • 1635

奇异值分解及几何意义

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义。能在有限的篇幅把这个问题讲解的如此清晰,实属不易。原文举了一个简单的图像处理问题,简单形象,真...
  • redline2005
  • redline2005
  • 2014年04月19日 11:34
  • 40878

奇异值分解(SVD)

综述: 奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解在某些方面与对称矩阵或Hermite矩阵基...
  • zhaogang1993
  • zhaogang1993
  • 2014年12月31日 11:01
  • 2273

机器学习之旅---奇异值分解

本次主要讲解主要内容如下:
  • jinshengtao
  • jinshengtao
  • 2014年11月22日 22:26
  • 5438
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:范数、奇异值
举报原因:
原因补充:

(最多只允许输入30个字)