范数、奇异值

原创 2015年07月08日 16:44:00

【范数】
格式:n=norm(A,p)
功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数
以下是Matlab中help norm 的解释
NORM Matrix or vector norm.
For matrices…
NORM(X) is the largest singular value of X, max(svd(X)).
NORM(X,2) is the same as NORM(X).
NORM(X,1) is the 1-norm of X, the largest column sum,
= max(sum(abs(X))).
NORM(X,inf) is the infinity norm of X, the largest row sum,
= max(sum(abs(X’))).
NORM(X,’fro’) is the Frobenius norm, sqrt(sum(diag(X’*X))).
NORM(X,P) is available for matrix X only if P is 1, 2, inf or ‘fro’.
For vectors…
NORM(V,P) = sum(abs(V).^P)^(1/P).
NORM(V) = norm(V,2).
NORM(V,inf) = max(abs(V)).
NORM(V,-inf) = min(abs(V)).
1、如果A为矩阵
n=norm(A) ,返回A的最大奇异值,即max(svd(A))
n=norm(A,p) ,根据p的不同,返回不同的值
p 返回值
1 返回A中最大一列和,即max(sum(abs(A)))
2 返回A的最大奇异值,和n=norm(A)用法一样
inf 返回A中最大一行和,即max(sum(abs(A’)))
fro’ 返回A和A‘的积的对角线和的平方根,即sqrt(sum(diag(A’*A)))

2、如果A为向量
norm(A,p) 返回向量A的p范数。即返回 sum(abs(A).^p)^(1/p),对任意p大于1小于正无穷;
norm(A) 返回向量A的2范数,即等价于norm(A,2),即sum(abs(A).^2)^(1/2)
norm(A,inf) 返回max(abs(A))
norm(A,-inf) 返回min(abs(A))
【奇异值】
格式:[U,S,V] = svd(X)
解释: [U,S,V] = svd(X) produces a diagonal matrix S of the same dimension as X, with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that X = U*S*V’.
假设X为mn矩阵,则S为奇异值矩阵,它为m*n阶对角矩阵,其对角线上的值为X^* X的非负特征值的算术平方根;U为m*m阶酉矩阵,它是X*X^(X的共轭转置)的特征向量;V为n*n阶酉矩阵,它是X^(X的共轭转置)* X的特征向量;

相关文章推荐

矩阵范数和奇异值分解

  • 2014年09月14日 20:49
  • 1.64MB
  • 下载

奇异值C语言实现

  • 2015年06月23日 13:30
  • 11KB
  • 下载

奇异值矩阵分解(Singular Value Decomposition)的一些感想

最近的大半年一直在和矩阵分解和数值运算打交道。主要是核心算法里用到了许多矩阵分解的东西,学习的过程很艰辛,走了很多弯路,本文全当一个记录,记录学习过程的一些思考,以及一部分自己的见解。 本文主要分为...
  • qwopasf
  • qwopasf
  • 2015年09月11日 23:44
  • 4980

奇异值差分谱

  • 2016年11月19日 10:15
  • 578B
  • 下载

奇异值定阶

  • 2013年06月01日 19:00
  • 24KB
  • 下载

奇异值与潜在语义索引LSI

http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 潜在语义索引(Latent Sem...

奇异值与特征值分解

  • 2013年12月20日 15:47
  • 145KB
  • 下载

基于奇异值的svdprony分解程序

  • 2012年09月22日 20:10
  • 6KB
  • 下载

机器学习之SVD奇异值原理分析及举例

中间的矩阵S即是我们所关心,它的对角线上的每一个值,越大,说明这一类元素越重要,同时我们也可以取一个r乘以r的近似值,来得到我们所关心的,对最终结果有重要影响的类别。例如,我想直到最重要的2项指标,那...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:范数、奇异值
举报原因:
原因补充:

(最多只允许输入30个字)