关闭

在csdn上面看到的题目

标签: 算法divstring
1033人阅读 评论(2) 收藏 举报
分类:
csdn上面看到一道题目:
对于任意正整数nfn)表示从1n中数字1出现的次数。例如f(3)=1;   f(11)=4;   f(13)=6;
设计一个算法来计算f(n);
最开始想到的算法是最直接的算法:对1n的每个数字m,将m转换成字符串,计算该字符串中字符‘1’出现的次数。所有的次数的和就是计算的结果。具体算法如下:
 
public long countAppearTimes(long n)
{
long appearTimes = 0;
for long i = 1; i <= n; i++
{
   String strN = String.valueOf(i);
   int length = strN.length();
   for (int i=0; i< length; i++)
   {
        if (strN.charAt(i) == ‘1’)
        {
           appearTimes = appearTimes + 1;
        }
   }
}
return appearTimes;
}
这个算法比较直接,也比较好理解,但是效率太低下。当n比较小的时候还显示不出来,但是当n比较大的时候,就十分明显了。在我的机器上,当n999999999时,运行了540047ms,也就是9分钟的时间。
      是否有比较简单、高效的算法呢?
我们来做一下转换。假设给出的n是一个m位的数字,可以表示为
a1a2a3a4a5a6......am。那么将从1n的所有的数字都按m位编写,不足的在左端补0。具体形式如下
0         0          0         0      ......     0           0          1
0         0          0         0      ......     0           0          2
......
0         0          0         0      ......     0           1          0
0         0          0         0      ......     0           1          1
......
a1     a2     a3         a4     。。。。。。         am2         am-1                   am
我们可以发现以下的规律:
个位上的数字,每10个中就有11
十位上的数字,每100个中有101;(10——19
百位上的数字,每1000个中有1001;(100——199
依次类推,在从前向后数的第i位上的数字,每10m-i+1个中就有10m-i1
因此,对于n= a1a2a3a4a5a6......am;第i位的数字为ai
1.     如果ai 等于0,那么第i位上有 a1a2a3a4a5a6...... ai-1 * 10 m-i 1
也就是说,如果ai 等于0,那么第i位上的1的个数为n/10m-i+1*10m-i1
注意,/表示整除,例如132/10 13。以下相同
例如:n13059;第三位为0。那么第三位上的1共有
13059/105-3+1*105-3=1300个。即
100——1991100——11992100——21993100——31994100——41995100——51996100——61997100——71998100——8199......13100——13199
2.     如果ai等于1,那么从1a1a2a3a4a5a6... ai-1099...9,i位上的1的个数可以根据情况1计算出来。从a1a2a3a4a5a6... ai-1100...0a1a2a3a4a5a6... ai-11 ai1 ai2... am 中第i位上的1的个数为 ai1 ai2... am+1,n%10m-i + 1个。(%表示取余,例如132 %10 = 2。以下相同)所以第i位上共有n/10m-i+1*10m-i + n%10m-i + 11
3.     如果ai位是其他的数字,那么第i位上共有n/10m-i+1*10m-i + 10m-i  =(n/10m-i+1+1)* 10m-i1。具体的推算各位可以自己去验证。
根据这思想,就有以下的算法。
public long countAppearTimes(long n){
        long times = 0;
        String str = String.valueOf(n);
        int length = str.length();
        for (int i=0; i<length; i++){
//注意这里i是从0开始的,上面的算法描述中的是从1开始的,因此以下的程序稍有不同。
            long exp = Math.round(Math.pow(10, length-i-1));
            long mod = n % exp;
            long div = n / exp;
            long tempTimes = 0;
          
            if (str.charAt(i)=='1'){
                tempTimes = mod + 1;
                tempTimes = tempTimes + (div -1) * exp / 10;
                times = times + tempTimes;
            }
            else{
                if (str.charAt(i) == '0')
                    tempTimes = tempTimes + div / 10 * exp;
                else
                    tempTimes = tempTimes + (div /10 +1)*exp;
                times = times + tempTimes;
            }
        }
        return times;
    }
通过验证,这个算法和最原始的算法的结果是完全相同的(验证了从199999999)。
这个算法的效率如何呢?当n999999999时,运行了109ms
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:51468次
    • 积分:770
    • 等级:
    • 排名:千里之外
    • 原创:15篇
    • 转载:6篇
    • 译文:7篇
    • 评论:7条
    文章分类
    最新评论
    我的其他blog