关闭
当前搜索:

目录 《显卡就是开发板》

目录 《显卡就是开发板》 第一期 实验环境搭建 http://blog.csdn.net/aggresss/article/details/78424590 第二期 Tensorflow 基准测试 http://blog.csdn.net/aggresss/article/details/78438051 第三期 利用已经训练的神经网络进行图像识别 http://blog.csdn.net/a...
阅读(123) 评论(0)

第十期 使用 Keras 和 Flask 构建一个在线 API 《显卡就是开发板》

用Jupyter notebook 来进行演示在生产环境中并不是很实用,在应用环境中如果想要预测一个场景通常需要返回指定格式的文本形式的信息,我写了一个小例子,使用flask架构创建了一个简陋的API,客户端通过curl工具上传图片,并返回指定格式的json流。...
阅读(356) 评论(0)

第九期 使用 Keras 在游戏中实现自动驾驶 《显卡就是开发板》

记得小时候玩的游戏机在没有投币的时候会自动播放预先录制的游戏视频,然后屏幕上会闪烁着”DEMONSTRATION”的字样,当时不理解是预先录制的游戏视频,认为是机器可以自己操控自己玩游戏,因为那时没有什么探索的方式(比如图书馆或者搜索引擎),但还是会占用上课的时间去思考机器自己和自己玩游戏是怎么实现的。好奇心重的人真的每天都生活在坑里,一个接着一个的坑。 这一期我来演示一个机器通过深度学习的方式和...
阅读(367) 评论(0)

第八期 使用 Keras 训练神经网络 《显卡就是开发板》

对于神经网络的应用,最短的路径当然是使用具有理论基础和实践基础的成型网络直接使用,但是针对某些特殊场景,预先定义和训练好的网络不足以完成当前的任务,这时就要自己去训练网络莱适应当前任务,这一期我们使用 Kares 来演示一个神经网络的调试过程。在寻找这方面的素材过程中我发现 Kares 的作者 Francois Chollet 的一篇blog《 Building powerful image cla...
阅读(237) 评论(0)

第七期 使用 Keras 演示神经网络 《显卡就是开发板》

这一期我们来演示一种更加简洁的深度神经网络构建方法–Keras,下面这张图片展示了Keras在网络栈中的位置。可见Keras是一种比较高级的API,也就是说用它来构建网络使用的代码量会更少,下面用一段代码来演示一下,我们使用通过ImageNet预先训练好的VGG16结构的网络来分类一张图片。%matplotlib inline from keras.applications.vgg16 import...
阅读(166) 评论(0)

第六期 基于 Inception-V3 训练网络识别面部特征 《显卡就是开发板》

通过前几期的演示,我们可以大概总结出一个深度学习网络成型的一般步骤:     1. 准备数据集     2. 构建网络模型     3. 训练网络模型     4. 评估网络模型   这一期我们再做一个有意思的演示实验,让深度学习网络学习人的面部特征,从面部特征来估计人的年龄。 按照上面总结的一般步骤,首先我们需要一个标有年龄标签的数据集,在网络上找到了一个开放的人脸库 http://...
阅读(171) 评论(0)

第五期 基于 Inception-V3 重新训练网络 《显卡就是开发板》

tensorflow官方有很多值得实践一下的例子,这一期我们使用Tensorflow官方提供的一个重新训练网络的例子进行演示,下面时这个例子的链接: https://www.tensorflow.org/versions/master/tutorials/image_retraining https://codelabs.developers.google.com/codelabs/tensorf...
阅读(138) 评论(0)

第四期 Jupyter 和 OpenCV 实践《显卡就是开发板》

第一次使用 Jupyter 时感觉各种不适应,因为用惯了各种IDE,觉得 Jupyter 没有什么使用价值,但在以后的实践中发现了它和IDE的互补之处:   1.Jupyter设计目的是在交互式计算和软件开发这两个方面最大化的提高生产力。它鼓励一种 执行-探索 的工作模式 ,而不是传统IDE那种 编辑-编译-运行 的传统工作模式, 由于大部分的数据分析代码都含有探索模式操作(试误法和迭代法),因...
阅读(140) 评论(0)

第三期 利用已经训练的神经网络进行图像识别 《显卡就是开发板》

本着更好的演示的态度,在进行改造或者训练神经网络之前,我们先来感受一下已经训练好的神经网络是什么样子的,这一期使用Tensorflow的Tutorials里面的 Image Recognition 的案例来将 使用 ImageNet 中提供的1000种分类的数据训练出来的InceptionV3模型的神经网络来做一个小小的演示。   这个演示非常简单,首先使用搜索引擎下载一个常见物种的图片,比如我通...
阅读(253) 评论(0)

第二期 Tensorflow 基准测试 《显卡就是开发板》

深度神经网络相关的blog里总会提示我们使用GPU训练网络是必须的,但没有一个数值的概念,我们真的不好评判GPU在训练网络方面到底比CPU快多少,这一期我们就利用上一期搭建的实验环境跑个小Demo实测一下GPU的性能。 Benchmarking State-of-the-Art Deep Learning Software Tools http://dlbench.comp.hkbu.edu.hk/...
阅读(183) 评论(0)

第一期 实验环境搭建 《显卡就是开发板》

对于一个FPS游戏爱好者,一听到“显卡”这个词,肯定会特别兴奋。对于刚接触电脑时显卡的概念就是可以让游戏运行的更快,后来对显卡的认知拓展为可以使PhotoShop等做图软件加速运行,直到2008年了解到CUDA的概念才对显卡的认知拓展到了更广的领域。显卡天生就是用来做并行计算的,游戏只是它的一个小的应用分支。不过在十年前,我对并行计算还没有任何应用点,所以那时只是下载了CUDA的SDK,运行了几个D...
阅读(240) 评论(0)

利用Eclipse搭建Linux内核开发环境

利用Eclipse搭建Linux内核开发环境正文  时光流逝,记得十年前还是个游手好闲的少年,无聊时觉得应该分析一下Linux内核源码,没有别的动机,只觉得这样很酷。   没有任何项目经验的话,突然眼前出现一个浩大的工程,除了惊叹之余,再无其他可言。Linux内核的学习曲线可能陡峭了一点,如果没有点定力的话,是不会有什么进步的。   当把几十MB的tar包下载到本地后,打开方式便成了困扰我的一个...
阅读(1108) 评论(2)

目录 《虚拟机就是开发板》

第一期 前言    http://blog.csdn.net/aggresss/article/details/54928181 第二期 QEMU模拟vexpress-a9开发板    http://blog.csdn.net/aggresss/article/details/54942848 第三期 QEMU调试U-Boot实验    http://blog.csdn.net/aggress...
阅读(799) 评论(0)

第七期 使用Qemu+Buildroot+Eclipse打造一个优雅的开发环境 《虚拟机就是开发板》

这一期的主题是使用虚拟机作为应用层开发的环境搭建。之前我们使用busybox和手动添加一些必要文件创建了一个简陋的文件系统,这一期我们把它替换成Buildroot,代码编辑工具我们也升级为Eclipse。         对于嵌入式的开发过程,痛点就是需要交叉编译,本地编写和编译,然后目标开发板上调试和运行。我们这一期争取把这些环节串联起来,形成一个优雅的整体。         首先需要下载B...
阅读(771) 评论(0)

第六期 基于QEMU进行Linux内核模块实验 《虚拟机就是开发板》

对于Linux内核的学习,多数都是从调试运行内核模块开始的,这一期我们来总结一下用模拟开发板调试运行内核模块的一般方法。         首先写一个内核模块的helloworld源文件,包括hello.c 和相应的Makefile: hello.c /* * A simple module for helloworld * * Copyright (C) 2017 aggresss (...
阅读(935) 评论(0)
67条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:114397次
    • 积分:1876
    • 等级:
    • 排名:千里之外
    • 原创:67篇
    • 转载:0篇
    • 译文:0篇
    • 评论:46条
    最新评论