关闭

[bzoj2818]gcd

标签: bzoj2818gcdphimu莫比乌斯反演
364人阅读 评论(0) 收藏 举报
分类:

Description

i=1Nj=1Ngcd(i,j)

N<=10^7

Solution

很显然的莫比乌斯反演~(≧▽≦)/~啦啦啦
然而本蒟蒻只会这种傻逼方法,跑了
这里写图片描述
WerKeyTom_FTD爷用了机智的phi法,跑的飞起。
这里写图片描述
好吧,回归正题。
首先,我们知道,根据普通的莫比乌斯反演,

Ans=pi=1Npμ(i)Npi2

然后,枚举T=pi
Ans=T=1NNT2p|Tpμ(Tp)

然后,后面那个∑可以预处理出来,设为a(T)
于是
Ans=T=1NNT2a(T)

然后就可以优美的分块了(其实不用)

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define N 10000005
using namespace std;
typedef long long ll;
int mu[N],p[N];
ll n,ans,a[N];
bool bz[N];
int main() {
    scanf("%lld",&n);mu[1]=1;
    fo(i,2,n) {
        if (!bz[i]) p[++p[0]]=i,mu[i]=-1;
        fo(j,1,p[0]) {
            int k=i*p[j];if (k>n) break;bz[k]=1;
            if (!(i%p[j])) break;mu[k]=-mu[i];
        }
    }
    fo(i,1,p[0]) fo(j,1,n/p[i]) a[p[i]*j]+=mu[j];
    fo(i,1,n) a[i]+=a[i-1];
    for(ll l=1,r;l<=n;l=r+1) {
        ll x=n/l;r=n/x;
        ans+=(r-l+1)*x*x*(a[r]-a[l-1]);
    }
    printf("%lld",ans);
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:144535次
    • 积分:4825
    • 等级:
    • 排名:第6580名
    • 原创:335篇
    • 转载:4篇
    • 译文:0篇
    • 评论:77条
    博客公告
    我觉得我已经是一碗废蘑菇汤了……
    博客专栏
    文章分类
    最新评论