[bzoj2818]gcd

原创 2016年05月30日 20:53:38

Description

i=1Nj=1Ngcd(i,j)

N<=10^7

Solution

很显然的莫比乌斯反演~(≧▽≦)/~啦啦啦
然而本蒟蒻只会这种傻逼方法,跑了
这里写图片描述
WerKeyTom_FTD爷用了机智的phi法,跑的飞起。
这里写图片描述
好吧,回归正题。
首先,我们知道,根据普通的莫比乌斯反演,

Ans=pi=1Npμ(i)Npi2

然后,枚举T=pi
Ans=T=1NNT2p|Tpμ(Tp)

然后,后面那个∑可以预处理出来,设为a(T)
于是
Ans=T=1NNT2a(T)

然后就可以优美的分块了(其实不用)

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define N 10000005
using namespace std;
typedef long long ll;
int mu[N],p[N];
ll n,ans,a[N];
bool bz[N];
int main() {
    scanf("%lld",&n);mu[1]=1;
    fo(i,2,n) {
        if (!bz[i]) p[++p[0]]=i,mu[i]=-1;
        fo(j,1,p[0]) {
            int k=i*p[j];if (k>n) break;bz[k]=1;
            if (!(i%p[j])) break;mu[k]=-mu[i];
        }
    }
    fo(i,1,p[0]) fo(j,1,n/p[i]) a[p[i]*j]+=mu[j];
    fo(i,1,n) a[i]+=a[i-1];
    for(ll l=1,r;l<=n;l=r+1) {
        ll x=n/l;r=n/x;
        ans+=(r-l+1)*x*x*(a[r]-a[l-1]);
    }
    printf("%lld",ans);
}
版权声明:既然是蒟蒻写的文,那么各位大爷就将就着看吧~跑的比西方记者慢多了233 举报

相关文章推荐

bzoj2818: Gcd(第二次做)

莫比乌斯反演 | 欧拉函数

[BZOJ2818]Gcd(莫比乌斯反演)

给浮躁以宁静,给躁急以清冽,给高蹈以平实,给粗犷以明丽。

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

bzoj 2818 Gcd(莫比乌斯+gcd(a,b)=d) 经典

2818: Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.

【bzoj2818】【GCD】【数论】

Description 给定整数N,求1 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 ...

bzoj2818 Gcd

欧拉函数或莫比乌斯反演

BZOJ 2818: 欧拉筛法求gcd(x,y)==k(k为质数)

Description给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.Input一个整数NOutput如题Sample Input4Sample Output4H...

【BZOJ 2818】 gcd(附φ的线性筛法预处理)

Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. 1<=N<=10^7Analysis设gcd(px,py)=p,pgcd(px,py)...

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

[BZOJ 2818] gcd · 欧拉函数

欧拉函数。 随意感受一下,大概就是要你求这个东西: 但是N    其中K是从[1,N]的素数。 再稍微观察一下就又发现,其实这个公式后面半部分就是phi(i),那么公式就进一步简化为: 求phi...

【BZOJ2818】Gcd(莫比乌斯反演)

题目链接莫比乌斯反演是组合数学中很重要的内容,可以用于解决很多组合数学的问题。 参考 假设有两个定义在非负整数集上的函数f(n)f(n)和F(n)F(n) 有两种表述形式 第一种: F(n)...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)