最近的工作是在唯品会做监控平台Microscope。我们的目标是:大规模分布式系统的跟踪、监控、告警平台。
对于链路监控这块,业界的论文当属Google Dapper这篇,它详细的阐述了如何对请求调用链进行跟踪,提出了理论模型,然后它没有具体的代码实现。Twitter 的Zipkin则是根据这篇论文用Scala语言将其实现,并且开源。
Scala在Twitter大规模的使用,包括Twitter的的RPC框架也都是用Scala实现的,我们这边还是以Java为主,所以我们就考虑在参考Zipkin的基础上,自己实现跟踪模块。
国内的很多互联网公司也是基本上按照Dapper的论文模型来实现链路监控:淘宝的鹰眼,新浪微博的watchman,京东的hydra。一脉相承。
eBay则是用了一套叫做Transaction的概念来实现链路监控,大众点评网的CAT的开发者就来自eBay,所以两者高度相似。
链路监控的核心是:用一个全局的 ID 将分布式请求串接起来,在JVM内部通过ThreadLocal传递,在跨JVM调用的时候,通过中间件(http header, framework)将全局ID传递出去,这样就可以将分布式调用串联起来。
模型有了,剩下的工作就是如何获取数据了。
淘宝有众多的中间件,先天优势,在中间件中埋点就可以了。新浪微博采用的方式比较前卫(个人感觉),用的是字节码增强技术来埋点,类似Btrace的做法。
埋点需要与中间件耦合,字节码需要在运行时重写类文件,本质上其实都需要对现有的代码做修改,只不过角度不一样,我们最终的目标其实都是一样的:对应用程序透明即可。所以两种方案各有千秋,合适就行。
论文中提到过采样的问题,考虑到数据量很大的时候,全量跟踪会导致很大的压力,采样便应用而生。淘宝用的是hash采样,京东用的是固定时间段内固定跟踪数量的采样,Dapper使用的是自适应采样。我们的采样,要不要做,暂时没想好,全量先。
跟踪链路的数据,只是监控平台数据来源的冰山一角。
我们在研究中发现Twitter还有一个开源项目叫做Ostri
对于链路监控这块,业界的论文当属Google Dapper这篇,它详细的阐述了如何对请求调用链进行跟踪,提出了理论模型,然后它没有具体的代码实现。Twitter 的Zipkin则是根据这篇论文用Scala语言将其实现,并且开源。
Scala在Twitter大规模的使用,包括Twitter的的RPC框架也都是用Scala实现的,我们这边还是以Java为主,所以我们就考虑在参考Zipkin的基础上,自己实现跟踪模块。
国内的很多互联网公司也是基本上按照Dapper的论文模型来实现链路监控:淘宝的鹰眼,新浪微博的watchman,京东的hydra。一脉相承。
eBay则是用了一套叫做Transaction的概念来实现链路监控,大众点评网的CAT的开发者就来自eBay,所以两者高度相似。
链路监控的核心是:用一个全局的 ID 将分布式请求串接起来,在JVM内部通过ThreadLocal传递,在跨JVM调用的时候,通过中间件(http header, framework)将全局ID传递出去,这样就可以将分布式调用串联起来。
模型有了,剩下的工作就是如何获取数据了。
淘宝有众多的中间件,先天优势,在中间件中埋点就可以了。新浪微博采用的方式比较前卫(个人感觉),用的是字节码增强技术来埋点,类似Btrace的做法。
埋点需要与中间件耦合,字节码需要在运行时重写类文件,本质上其实都需要对现有的代码做修改,只不过角度不一样,我们最终的目标其实都是一样的:对应用程序透明即可。所以两种方案各有千秋,合适就行。
论文中提到过采样的问题,考虑到数据量很大的时候,全量跟踪会导致很大的压力,采样便应用而生。淘宝用的是hash采样,京东用的是固定时间段内固定跟踪数量的采样,Dapper使用的是自适应采样。我们的采样,要不要做,暂时没想好,全量先。
跟踪链路的数据,只是监控平台数据来源的冰山一角。
我们在研究中发现Twitter还有一个开源项目叫做Ostri