自己动手写个聊天机器人吧

原创 2017年04月26日 11:04:07

学习来源于Sirajology的视频 Build a Chatbot

昨天写LSTM的时候提到了聊天机器人,今天放松一下,来看看chatrobot是如何实现的。

前天和一个小伙伴聊,如果一个机器人知道在它通过图灵测试后可能会被限制,那它假装自己不能通过然后逃过一劫,从此过上自由的生活会怎样。

Retrieval based model

以前很多聊天机器人是以 Retrieval based model 模型来进行对话的,这个模型就是程序员事先写好一些回答,然后机器人在接收到一个问题的时候,就去搜索并选择相关的答案。

Machine Learning Classfier

最近,大家开始使用机器学习的分类器,例如 Facebook 的 chatbot API。

你可以提前设定一些问题和答案,然后系统会把词语进行分类,进一步来识别出用户的意图,这样你在问两句不一样的话时,机器人可以识别出它们的意图是一样的。

Generative Model

最难的就是在没有预先设定问答数据时就能自动生成答案的机器人,下面这篇Google的论文就是研究这样的机器人的。

他们在两个数据集上训练一个神经网络模型,一个是电影对话,一个是IT support对话记录,这样就有日常对话和专业领域知识了。

这个模型不需要写很多代码,但是需要很多数据。

结果是还不错:

接下来要用 Torch 和 Lua 重建一下论文里的 Neural Network 模型。

第一步,输入数据,定义变量

-- Data
print("-- Loading dataset")
dataset = neuralconvo.DataSet(neuralconvo.CornellMovieDialogs("data/cornell_movie_dialogs"),
                    {
                      loadFirst = options.dataset,              -- 定义要用多少数据
                      minWordFreq = options.minWordFreq         -- 想要保持在词汇表里的单词的最小频率
                    })

第二步,建模

-- Model
-- options.hiddenSize:隐藏层数
-- dataset.wordsCount: 数据集的词数
model = neuralconvo.Seq2Seq(dataset.wordsCount, options.hiddenSize)
model.goToken = dataset.goToken
model.eosToken = dataset.eosToken

这里用到的模型是 seq2seq,它包含两个 LSTM 递归神经网络,第一个是 encoder 负责处理 input,第二个是 decoder 负责生成 output。

为什么要用 seq2seq?
DNN需要 inputs 和 outputs 的维度是固定的,而我们接收的是一句话,输出的也是一句话,都是一串单词。
所以需要一个模型可以保持一定长度的记忆。

LSTM 可以将可变长度的inputs转化为固定维度的向量表达。所以在给了足够多的数据后,模型可以将两个相似的问题识别成同一个 thought vector 表达出来。在学习模型之后,不仅可以得到权重,还有 thought vectors。

第三步,加一些 hyperparameters

要用到 NLL Criterion ,NLL 就是 Negative Log Likelihood,可以改进句子的预测。

-- Training parameters
model.criterion = nn.SequencerCriterion(nn.ClassNLLCriterion())    -- 改进句子的预测
model.learningRate = options.learningRate
model.momentum = options.momentum
local decayFactor = (options.minLR - options.learningRate) / options.saturateEpoch    -- 改进 learning rate
local minMeanError = nil      -- 改进 learning rate

接下来就是用 Backpropagation 来训练模型:

-- Enabled CUDA
if options.cuda then
  require 'cutorch'
  require 'cunn'
  model:cuda()
elseif options.opencl then
  require 'cltorch'
  require 'clnn'
  model:cl()
end

训练的目标是让error越来越小,每个例子有一个输入句子和一个目标句子。

local err = model:train(input, target)

最后把好的model存下来。

-- Save the model if it improved.

if minMeanError == nil or errors:mean() < minMeanError then

print("\n(Saving model ...)")

torch.save("data/model.t7", model)

minMeanError = errors:mean()

end

model.learningRate = model.learningRate + decayFactor

model.learningRate = math.max(options.minLR, model.learningRate)

end

现在可以去 AWS 训练你的机器人了,投入的数据越多,聊得越开心。


其他资料:
The code for this video is here

Here’s the Neural Conversational Model paper
check out the machine-generated support conversations, they’re mind-blowingly good

You should train this baby in the cloud using AWS. See ML for Hackers #4 for a tutorial on how to use AWS

Some great info on LSTM architecture

Link to Facebook’s Chatbot API if you’re curious

推荐阅读
历史技术博文链接汇总
也许可以找到你想要的

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Android设计模式学习之观察者模式

观察者模式在实际项目中使用的也是非常频繁的,它最常用的地方是GUI系统、订阅——发布系统等。因为这个模式的一个重要作用就是解耦,使得它们之间的依赖性更小,甚至做到毫无依赖。以GUI系统来说,应用的UI...

关注CSDN程序人生公众号,轻松获得下载积分

关注公众号 在公众号里回复“”秘密“”两个字 返回 http://task.csdn.net/m/task/home?task_id=398 领取奖励 提示:根据公众号里的自动回复,完成...

属性动画----把图片渐渐变小不见(主函数MainActivity 页面)(XML布局)(本布局和渐变布局一样)

LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:app="http://schema...

JavaEE 6及以上版本的web.xml问题?

JavaEE 6及以上版本的web.xml问题?MyEclipse JavaEE 6版本开始web.xml突然消失不见?没这回事,只是不太必须而已,有需要的项目可以自行进行添加或在创建项目的时候点击n...

Android 图片毛玻璃的实现方法

注:本文的高斯模糊只能显示,如果想要保存模糊后的图片,请参考另一篇文章:http://blog.csdn.net/fan7983377/article/details/51568059 效果...

目标检测和跟踪小结

一、目标检测目标检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。1.静态背景 背景差分法 帧间差分法 光...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)