拓扑排序

原创 2013年12月04日 12:23:08

题目描述

由某个集合上的一个偏序得到该集合上的一个全序,这个操作被称为拓扑排序。偏序和全序的定义分别如下:
若集合X上的关系R是自反的、反对称的和传递的,则称R是集合X上的偏序关系。
设R是集合X上的偏序,如果对每个x,y∈X必有xRy或yRx,则称R是集合X上的全序关系。
由偏序定义得到拓扑有序的操作便是拓扑排序。
拓扑排序的流程如下:
1.       在有向图中选一个没有前驱的顶点并且输出之;
2.       从图中删除该顶点和所有以它为尾的弧。
重复上述两步,直至全部顶点均已输出,或者当前图中不存在无前驱的顶点为止。后一种情况则说明有向图中存在环。
采用邻接表存储有向图,并通过栈来暂存所有入度为零的顶点,可以描述拓扑排序的算法如下:
在本题中,读入一个有向图的邻接矩阵(即数组表示),建立有向图并按照以上描述中的算法判断此图是否有回路,如果没有回路则输出拓扑有序的顶点序列。

输入格式

输入的第一行包含一个正整数n,表示图中共有n个顶点。其中n不超过50。
以后的n行中每行有n个用空格隔开的整数0或1,对于第i行的第j个整数,如果为1,则表示第i个顶点有指向第j个顶点的有向边,0表示没有i指向j的有向边。当i和j相等的时候,保证对应的整数为0。

输出

如果读入的有向图含有回路,请输出“ERROR”,不包括引号。
如果读入的有向图不含有回路,请按照题目描述中的算法依次输出图的拓扑有序序列,每个整数后输出一个空格。
请注意行尾输出换行。

样例输入

4
0 1 0 0
0 0 1 0
0 0 0 0
0 0 1 0

样例输出

3 0 1 2 

提示[-]

在本题中,需要严格的按照题目描述中的算法进行拓扑排序,并在排序的过程中将顶点依次储存下来,直到最终能够判定有向图中不包含回路之后,才能够进行输出。
另外
为了避免重复检测入度为零的顶点,可以通过一个栈结构维护当前处理过程中入度为零的顶点。
注意避免顶点被重复入栈,则对于已经入过栈的顶点可以使其入度标记为-1



AC代码如下


#include<iostream>
#include<cstdio>
#include<stack>
using namespace std;

#define MAXLEN 100
int Indegree[MAXLEN];//顶点入度
int M[MAXLEN][MAXLEN];//图
int N;//顶点数
stack<int>Stack;
int Print[MAXLEN];

void GetM()
{
	cin>>N;
	for(int i=0;i<N;i++)
		for(int j=0;j<N;j++)
			cin>>M[i][j];
}

void IndegreeInit()    //入度数组初始化
{
	int degree;
	for(int j=0;j<N;j++)
	{
	   degree=0;
		for(int i=0;i<N;i++)
		{
			if(M[i][j]!=0)
				degree++;
		}
		Indegree[j]=degree;
	}
}

void Topo()
{
	int count;
	int Top;
	IndegreeInit();
	for(int i=0;i<N;i++)
	{
		if(Indegree[i]==0)
		{
			Stack.push(i);
			Indegree[i]=-1;//标记为已入栈
		}

	}    //检测入度为0 的点,入栈
	count=0;
	//for(int i=0;i<N;i++)cout<<Indegree[i]<<endl;
	while(!Stack.empty())
	{
		Top=Stack.top();
		Print[count]=Top;//输出栈顶
		count++;
		Stack.pop();
		for(int j=0;j<N;j++)
		{
			if(j!=Top)
			{
				if(M[Top][j]!=0) Indegree[j]--;//相关联的顶点入度减一
				if(Indegree[j]==0)
				{
					Stack.push(j);
					Indegree[j]=-1;//标记为已入栈
				}
			}
		}
	}
	if(count<N) cout<<"ERROR"<<endl;
	else
	{
		for(int i=0;i<N;i++)cout<<Print[i]<<" ";
		cout<<endl;
	}
}
int main()
{
	freopen("D:\\test.txt","r",stdin);
	freopen("D:\\tested.txt","w",stdout);
	GetM();
	Topo();
	return 0;

}



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

拓扑排序方法

  • 2013年07月10日 16:15
  • 312KB
  • 下载

ssl1606 选课(拓扑排序)

Description   大学里实行学分。每门课程都有一定的学分,学生只要选修了这门课并考核通过就能获得相应的学分。学生最后的学分是他选修的各门课的学分的总和。    每个学生都要选择规定数量的课程...

用拓扑排序算法分析学习计划

  • 2011年12月24日 08:37
  • 4KB
  • 下载

AOV网与拓扑排序

  • 2011年11月26日 16:52
  • 35KB
  • 下载

拓扑排序(Topological Sort)

0)拓扑排序 拓扑排序是对有向无圈图的顶点的一种排序,这个排序的结果是如果存在一条vi到vj的路径,那么排序中vi在vj的前面。 下图是一个有向无圈图的例子: 在这个有向无圈图中,1,6...

拓扑排序算法

  • 2013年12月19日 14:50
  • 2KB
  • 下载

拓扑排序问题

  • 2017年11月08日 23:35
  • 117KB
  • 下载

c语言实现拓扑排序(《数据结构》算法7.12)

邻接表+拓扑排序,输出的是无向图的拓扑有序序列。 代码如下:#include #include #include #define MAX_VERTEX_NUM 100 using namespace...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:拓扑排序
举报原因:
原因补充:

(最多只允许输入30个字)