关闭
当前搜索:

2017年深度学习在NLP领域的进展和趋势

本文翻译的是这篇文章 在过去的很多年里,深度学习架构和算法在某些领域,比如图像识别和语音处理,取得了令人印象深刻的进展。 最初,深度学习架构和算法在NLP领域并没能取得大的进展,但是最近深度学习在普通NLP任务上的取得的结果显示深度学习也能取得显著的效果。命名实体识别、词性标注和情感分析就即是神经网络模型优于传统方法的地方。而机器翻译是所有进展中是最值得纪念的。 从自己训练word2ve...
阅读(410) 评论(0)

[DL]基于Pytorch的seq2seq模型

import torch import torch.nn as nn class RNNEncode(nn.Module): def __init__(self): super(RNNEncode,self).__init__() self.input_size=1000 self.hidden_size=10 self.out...
阅读(188) 评论(0)

[DL]基于Pytorch的N-gram Language Model

import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim torch.manual_seed(1) word2index={'a':0,'b':1} embeds=nn.Embedding(2,5) a...
阅读(68) 评论(0)

[DL]基于Pytorch的Linear classified model

留个坑,后面再添加详细解释data = [("我 的 家 乡 在 哪 里".split(), "CHINESE"), ("Give it to me".split(), "ENGLISH"), ("今 天 天 气 怎 么 样".split(), "CHINESE"), ("No it is not a good idea to get lost at...
阅读(63) 评论(0)

[DL]基于pytorch的Elman RNN语言模型

留个坑,先放代码,后面再解释#qa_pairs_parallel.txt import torch import torch.nn as nn import jieba class Sentences(object): def __init__(self,dirname): self.dirname=dirname def __iter__(self):...
阅读(121) 评论(0)

[工具]Ubuntu安装HP MFP m128fn型号的打印机

依次执行如下的命令,执行过程中注意查看提示。wget https://excellmedia.dl.sourceforge.net/project/hplip/hplip/3.17.10/hplip-3.17.10.run sudo sh hplip-3.17.10.run sudo hp-setup...
阅读(139) 评论(0)

[[NLP]基于Simaese LSTM的句子相似度计算

句子相似度计算在问答系统以及客服机器人当中应用比较频繁,比对针对对话模型中比较频繁的问句可以先进行过滤,之后再进行对话理解。在文本检测方面也有所应用,比如作家写作风格的检测。本文叙述的句子相似度计算方法来自论文Siamese Recurrent Architectures for Learning Sentence Similarity,论文是基于Simaese LSTM网络对成对相似句进行训练,通...
阅读(465) 评论(0)

[web]Node.js入门

一直想搭建一个独立的blog,但是都没有找到合适的开源方案,曾经试过基于java、wordpress、还有node.js的静态网站,都不满意。 暂且不谈,这里先记录下Node.js的体验过程吧。安装安装比较简单,直接两行命令就解决。官方文档linkcurl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash - sudo apt-get...
阅读(139) 评论(0)

[DL]机器学习算法之支持向量机(Support Vector Machine)

SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。SVM的主要思想可以概括为两点: 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性...
阅读(128) 评论(0)

[DL]机器学习算法之逻辑回归

逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种。通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的特征属性,例如性别,年龄,注册时间等设置为自变量。根据特征属性预测购买的概率。 逻辑回归的预测模型: 逻辑回归不是回归问题,而是二分类问题,因变量不是0就是1,那么我们很自然的认为概率函数服从伯努利...
阅读(151) 评论(0)

[DL]机器学习算法之岭回归

上篇文章介绍了线性回归,但是一般线性回归模型在处理复杂的数据的回归问题时会遇到一些问题,主要表现在: 1.预测精度:要处理好样本的数量n和特征的数量p之间的关系。 当n>>p时,最小二乘回归会有较小的方差; 当n≈p n\approx p时,容易产生过拟合; 当n< p时,最小二乘回归得不到有意义的结果。 2.模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模...
阅读(81) 评论(0)

[DL]机器学习算法之之线性回归(Linear Regression)

线性模型的一般表达式为:模型参数的求解即是使用最小二乘法求的最小值。如果将线性模型用图像表示出来为: 附上代码(模型的实现步骤写在代码中):import matplotlib.pyplot as plt import numpy as npfrom sklearn import datasets, linear_model from sklearn.metrics import mean_squ...
阅读(103) 评论(0)

[翻译]词袋模型入门

写在前面的话词袋模型在机器学习算法中通常用于表征文本数据。词袋模型非常容易理解并在语言模型和文本分类上取得了很大的成功。本文我们将探索词袋模型在自然语言处理特征提取任务中的应用。通过本文,可以了解到如下内容: 什么是词袋模型以及为什么需要文本表示 如何实现词袋模型 如何使用不同的技术建立词汇表和给词赋予权重 正文在开始介绍之前,首先介绍本文的行文组织结构: 1.文本处理面临的问题 2.什么是词袋模型...
阅读(155) 评论(0)

[NLP]如何打造一个Chatbot

聊天机器人的应用非常广泛,无人驾驶、智能音箱、问答系统、客服机器人、对话机器人、个性化推荐、搜索引擎等等产品都有所应用。 说起聊天机器人想必大家都已经很熟悉了,比如亚马逊的Alex,谷歌的谷歌助手,苹果的Siri,百度的度秘以及众多大厂小厂都投身于聊天机器人相关技术的研发。 聊天机器人的火热程度勿用多说,从各大厂商对聊天机器人的投入也可以看出聊天机器人在商业上的价值巨大。作为机器人行业的从业者,...
阅读(793) 评论(0)

[翻译]机器学习如何个性化推荐音乐

本文翻译自链接,感兴趣的朋友可以去查看原文。Spotify[1]的每周推荐:机器学习如何为你推荐新音乐-个性化推荐后面的科学本周三,确切的说是每周三,超过1亿的Spotify用户都可以看到一个新的播放列表。这个播放列表包含了30首个性化混音曲目,这些曲目是用户从来没有听过的但很可能会喜欢。上述推荐叫做:每周推荐(Discover Weekly)。我是Spltify的铁杆粉丝,尤其是每周推荐(Disc...
阅读(252) 评论(0)

[NLP]如何进行情感分析

本文介绍的是如何进行情感识别。在自然语言中(尤其社交媒体和购物网站中),每一句话都隐含了具体的情感倾向,比如中性、正面、负面。比如:今天天气不错;今天心情不太好;苹果手机不错;地球是圆的。对于人来说,可以很轻易的就分辨出上述句子是正面的、中性的、负面的。 但是在自然语言处理中是如何进行判断的呢?下面就对基本的情感分析方法进行介绍。1.准备1.1 种子词库在真正开始前,首先想想人看到一句话是如何思考...
阅读(444) 评论(0)

[DL]概率论相关知识总结

本文总结了概率论的一些基本知识。概率分布在解释各种分布之前,我们先看看常见的分布类型有哪些,分布类型可分为离散型和连续型。离散型:数据只能取特定的值,比如,当你掷一个骰子的时候,可能的结果只有 1,2,3,4,5,6 而不会是 1.5 或者 2.45。连续型:数据可以在给定的范围内取任何值,给定的范围可以是有限的或无限的,比如一个女孩的体重或者身高,或者道路的长度。一个女孩的体重可以是 54 kgs...
阅读(115) 评论(0)

[NLP]CS224n学习笔记一:NLP介绍

1.什么是自然语言处理?自然语言处理是做什么的?自然语言处理难在哪里?语言是表达人的想法以及人与人之间交流的工具,而自然语言处理则是让计算机拥有处理人类语言的能力,从而让计算机能够使用和理解人类的语言。如今,自然语言处理在生活中应用已经很广泛,尤其是苹果的siri,谷歌的Google Assistant和alex,微软的Cortana和小冰。国内也有很多语音相关的应用,尤其是笔者所在的机器人行业,各...
阅读(186) 评论(0)

[nlp]意图分类是怎么实现的

如何进行意图分析之前开始做语义理解的时候,笔者采用的是比较粗暴的方法进行匹配。随着语料的积累,语料库的规模变得越来越大,匹配的效率也随着越来越低,对语料进行意图分类的想法也就随着产生。当用户输入之后,系统首先对输入进行意图分类,然后对分类下的语料进行匹配,从而减轻计算量,提高系统的匹配效率。本文只是简单的阐述一下意图分析的典型思路和方法,并实现一个基本的意图分类器,而无意系统的探究意图分类。更详细的...
阅读(251) 评论(0)

[python]NLTK简明教程

nltk简明教程NLTK是python环境下NLP工具包,包含了丰富的文本处理和文本挖掘API。安装安装NLTK比较简单,linux环境下只需要简单的执行sudo pip install -U nltk即可完成安装。语料下载import nltk #指定目录下载nltk自带的英文语料 #如果不是使用的默认路径需要执行下面的语句添加环境变量: #vim ~/.profile #文件末尾添加NLTK_D...
阅读(1148) 评论(0)
99条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:71487次
    • 积分:1680
    • 等级:
    • 排名:千里之外
    • 原创:89篇
    • 转载:0篇
    • 译文:10篇
    • 评论:39条
    AI学习公众号
    一起学AI
    文章分类
    最新评论