一种理想的在关系数据库中存储树型结构数据的方法

转载 2007年09月18日 16:14:00
    在各种基于关系数据库的应用系统开发中,我们往往需要存储树型结构的数据,目前有很多流行的方法,如邻接列表模型(The Adjacency List Model),在此基础上也有很多人针对不同的需求做了相应的改进,但总是在某些方面存在的各种各样的缺陷。
    那么理想中的树型结构应具备哪些特点呢?数据存储冗余小、直观性强;方便返回整个树型结构数据;可以很轻松的返回某一子树(方便分层加载);快整获以某节点的祖谱路径;插入、删除、移动节点效率高等等。带着这些需求我查找了很多资料,发现了一种理想的树型结构数据存储及操作算法,改进的前序遍历树模型(The Nested Set Model)。

一、数据

    在本文中,举一个在线食品店树形图的例子。这个食品店通过类别、颜色和品种来组织食品。树形图如下:


二、邻接列表模型(The Adjacency List Model)

在这种模型下,上述数据在关系数据库的表结构数据通常如下图所示:


由于该模型比较简单,在此不再详细介绍其算法,下面列出它的一些不足:

    在大多数编程语言中,他运行很慢,效率很差。这主要是“递归”造成的。我们每次查询节点都要访问数据库。每次数据库查询都要花费一些时间,这让函数处理庞大的树时会十分慢。造成这个函数不是太快的第二个原因可能是你使用的语言。不像Lisp这类语言,大多数语言不是针对递归函数设计的。对于每个节点造成这个函数不是太快的第二个原因可能是你使用的语言。不像Lisp这类语言,大多数语言不是针对递归函数设计的。对于每个节点,函数都要调用他自己,产生新的实例。这样,对于一个4层的树,你可能同时要运行4个函数副本。对于每个函数都要占用一块内存并且需要一定的时间初始化,这样处理大树时递归就很慢了。

三、改进的前序遍历树模型(The Nested Set Model)

原理:

    我们先把树按照水平方式摆开。从根节点开始(“Food”),然后他的左边写上1。然后按照树的顺序(从上到下)给“Fruit”的左边写上2。这样,你沿着树的边界走啊走(这就是“遍历”),然后同时在每个节点的左边和右边写上数字。最后,我们回到了根节点“Food”在右边写上18。下面是标上了数字的树,同时把遍历的顺序用箭头标出来了。

 

    我们称这些数字为左值和右值(如,“Food”的左值是1,右值是18)。正如你所见,这些数字按时了每个节点之间的关系。因为“Red”有3和6两个值,所以,它是有拥有1-18值的“Food”节点的后续。同样的,我们可以推断所有左值大于2并且右值小于11的节点,都是有2-11的“Food”节点的后续。这样,树的结构就通过左值和右值储存下来了。这种数遍整棵树算节点的方法叫做“改进前序遍历树”算法。

表结构设计:


常用的操作:

下面列出一些常用操作的SQL语句

返回完整的树(Retrieving a Full Tree)
SELECT node.name
  
FROM nested_category node, nested_category parent
 
WHERE node.lft BETWEEN parent.lft AND parent.rgt
   
AND parent.name = 'electronics'
 
ORDER BY node.lft

返回某结点的子树(Find the Immediate Subordinates of a Node)
SELECT V.*
  
FROM (SELECT node.name,
               (
COUNT(parent.name) - (AVG(sub_tree.depth) + 1)) depth
          
FROM nested_category node,
               nested_category parent,
               nested_category sub_parent,
               (
SELECT V.*
                  
FROM (SELECT node.name, (COUNT(parent.name) - 1) depth
                          
FROM nested_category node, nested_category parent
                         
WHERE node.lft BETWEEN parent.lft AND parent.rgt
                           
AND node.name = 'portable electronics'
                         
GROUP BY node.name) V,
                       nested_category T
                 
WHERE V.name = T.name
                 
ORDER BY T.lft) sub_tree
         
WHERE node.lft BETWEEN parent.lft AND parent.rgt
           
AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt
           
AND sub_parent.name = sub_tree.name
         
GROUP BY node.name) V,
       nested_category T
 
WHERE V.name = T.name
   
and V.depth <= 1
   
and V.depth > 0
 
ORDER BY T.Lft

返回某结点的祖谱路径(Retrieving a Single Path)
SELECT parent.name
  
FROM nested_category node, nested_category parent
 
WHERE node.lft BETWEEN parent.lft AND parent.rgt
   
AND node.name = 'flash'
 
ORDER BY node.lft

返回所有节点的深度(Finding the Depth of the Nodes)
SELECT V.*
  
FROM (SELECT node.name, (COUNT(parent.name) - 1) depth
          
FROM nested_category node, nested_category parent
         
WHERE node.lft BETWEEN parent.lft AND parent.rgt
         
GROUP BY node.name) V,
       nested_category T
 
WHERE V.name = T.name
 
ORDER BY T.Lft

返回子树的深度(Depth of a Sub-Tree)
SELECT V.*
  
FROM (SELECT node.name,
               (
COUNT(parent.name) - (AVG(sub_tree.depth) + 1)) depth
          
FROM nested_category node,
               nested_category parent,
               nested_category sub_parent,
               (
SELECT V.*
                  
FROM (SELECT node.name, (COUNT(parent.name) - 1) depth
                          
FROM nested_category node, nested_category parent
                         
WHERE node.lft BETWEEN parent.lft AND parent.rgt
                           
AND node.name = 'portable electronics'
                         
GROUP BY node.name) V,
                       nested_category T
                 
WHERE V.name = T.name
                 
ORDER BY T.lft) sub_tree
         
WHERE node.lft BETWEEN parent.lft AND parent.rgt
           
AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt
           
AND sub_parent.name = sub_tree.name
         
GROUP BY node.name) V,
       nested_category T
 
WHERE V.name = T.name
 
ORDER BY T.Lft

返回所有的叶子节点(Finding all the Leaf Nodes)
SELECT name FROM nested_category WHERE rgt = lft + 1

插入节点(Adding New Nodes)
LOCK TABLE nested_category WRITE;

SELECT @myRight := rgt FROM nested_category WHERE name = 'TELEVISIONS';

UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myRight;
UPDATE nested_category SET lft = lft + 2 WHERE lft > @myRight;

INSERT INTO nested_category
  (name, lft, rgt)
VALUES
  (
'GAME CONSOLES'@myRight + 1@myRight + 2);

UNLOCK TABLES;

删除节点(Deleting Nodes)
LOCK TABLE nested_category WRITE;

SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1
  
FROM nested_category
 
WHERE name = 'GAME CONSOLES';

DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight;

UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight;
UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight;

UNLOCK TABLES;
 

相关文章推荐

一种理想的在关系数据库中存储树型结构数据的方法

在各种基于关系数据库的应用系统开发中,我们往往需要存储树型结构的数据,目前有很多流行的方法,如邻接列表模型(The Adjacency List Model),在此基础上也有很多人针对不同的需求做了相...

一种理想的在关系数据库中存储树型结构数据的方法

在各种基于关系数据库的应用系统开发中,我们往往需要存储树型结构的数据,目前有很多流行的方法,如邻接列表模型(The Adjacency List Model),在此基础上也有很多人针对不同的需求做了相...

树形数据在关系数据库的存储

树形数据在关系数据库中的存储同对象一样,都会遇到一个"阻抗不匹配"的问题。如何设计一个表结构,才能较好的满足需求呢?事实上,有很多解决方案,但是没有哪一种是放之四海而皆准的。我个人认为解决方案的选择,...

关系数据库中常用的数据结构

数据结构是元素之间的一种关系。有四种基本的数据结构。线性数据结构,树形数据结构,集合数据结构,图形数据结构 其中线性数据(元素之间一对一的关系)结构又细分为,数组,链表,队列,堆栈。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)