题意:给定一个带权无向树,要切断所有叶子节点和1号节点(总根)的联系,每次切断边的费用不能超过上限limit,问在保证总费用<=m下的最小的limit。
按这题的要求:
要使得limit尽可能的小,但是又要满足<=m;这两个是矛盾的,比如:假设切断两个5或切断一个6都可以试树和“1”节点失去联系。因为要使limit小,切断两根用费为5的 比切断一根 花费为6更佳,但是这样总费用却多了4,可能就使得总费用超m了。
所以想在一次dfs里把limit和总费用都解决,几乎是不可能的……所以这题看似是简单,结果想了很久却不会做……
正解是二分枚举limit,初始l=1,r=最大边权;判断在该limit下能否符合m。能则缩小limit,否则增大limit。复杂度是 O(nlogm)完全是可以接受的。
然而我偷了一下懒直接一个for循环拍过去正好卡这个时间过去了(数据强肯定跪)
【代码】
/* ***********************************************
Author :angon
************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define showtime fprintf(stderr,"time = %.15f\n",clock() / (double)CLOCKS_PER_SEC)
#define lld %I64d
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scanl(d) scanf("%I64d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define scannl(n,m) scanf("%I64d%I64d",&n,&m)
#define mst(a,k) memset(a,k,sizeof(a))
#define LL long long
#define N 1005
#define mod 1000000007
inline int read(){int s=0;char ch=getchar();for(; ch<'0'||ch>'9'; ch=getchar());for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';return s;}
struct Edge
{
int v,w,next;
}edge[N*2];
int head[N],tot;
void addedge(int u,int v,int w)
{
edge[tot] = (Edge) {v,w,head[u]};
head[u] = tot++;
}
int n,m;
int dp[N]; //总花费
void dfs(int u,int fa,int M)
{
int flag=0; dp[u]=0;
for(int i=head[u]; ~i; i=edge[i].next)
{
int v = edge[i].v;
int w = edge[i].w;
if(v==fa) continue;
flag=1;
dfs(v,u,M);
if(w > M) //不能切断这条边,那只能靠儿子
dp[u] += dp[v];
else //能切,则选择小的那个
dp[u] += min(dp[v],w);
}
if(flag==0) dp[u] = 100001;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(~scann(n,m) && (m||n))
{
mst(head,-1); tot=0;
int maxc=0;
REP(i,1,n)
{
int u,v,w;
scann(u,v);scan(w);
addedge(u,v,w);
addedge(v,u,w);
maxc=max(w,maxc);
}
int flag=0;
for(int i=1;i<=maxc;i++)
{
dfs(1,-1,i);
if(dp[1]<=m)
{
printf("%d\n",i);
flag=1;
break;
}
}
if(!flag)
printf("-1\n");
}
return 0;
}

616

被折叠的 条评论
为什么被折叠?



