数学狂想曲(一)——搞笑图片的数学原理, 欧拉公式, 傅里叶变换

原创 2017年01月03日 10:04:18

搞笑图片的数学原理

这里写图片描述

这是一个在各论坛流传已久的图片。这个题目的描述虽不复杂,但仅凭大学本科的高等数学,实际上是搞不定这个问题的。

首先需要明确的是,上图中的被积函数1cosxx2的原函数不是初等函数,因此无法使用牛顿-莱布尼茨公式,求解该积分值。

它的解法其实图片中已经给出了线索,那就是傅立叶变换的能量积分公式。

以下是推导步骤:

利用半角公式进行变换。

由半角公式:

2sin2x2=1cosx

可得:

1cosxx2=2sin2x24x24=12(sinx2x2)2

查常用函数的傅立叶变换表,可得:

这里写图片描述

代入能量积分公式,可得:

+(sinx2x2)2dx=2π+(rect(t))2dt=2π1

因此:

+1cosxx2dx=122π=π

实际上,这类积分都是Dirichlet积分的变种,解法也不止一种。

参见:

http://wenku.baidu.com/view/bb9c8ffe910ef12d2af9e71a.html

http://wenku.baidu.com/view/1b47c415cc7931b765ce1547.html

下面回到原题,何为“能量积分”呢?

由电学的功率公式和欧姆定理可得:

W=UI=U2R=I2R

可见,无论f(t)表示电压U,还是表示电流I,[f(t)]2都和功率成正比,即[f(t)]2dt和能量成正比。

傅立叶变换的能量积分公式的物理意义是:同一信号的时域能量积分等于它的频域能量积分。通俗的说就是一个信号的能量,既可以看作是一段时间内信号能量的总和,也可看作是该信号各个频率分量的能量总和。

在历史上,该公式由Marc-Antoine Parseval于1799年发现,最初主要用于研究复变函数,后来才应用到傅立叶变换和信号处理领域。

它的更一般的描述为:一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和

注:Marc-Antoine Parseval des Chênes,1755~1836,法国数学家。曾5次参选法国科学院院士,但都落选了。

欧拉公式

由于欧拉大神的贡献很多,数学上以其命名的公式也有很多,而且知名度都不低。日常使用时,如果不以领域做区分,人们根本就不知道谈论的是哪个欧拉公式。

这里主要讨论复变函数领域的基石——欧拉公式:

eix=cosx+isinx

自然对数e

在讨论欧拉公式之前,首先要理解一下自然对数e的含义。

推荐阅读以下文章:

https://www.zhihu.com/question/20296247/answer/29370489

这里对上文中的要点做一个摘要。

假设你在银行存了1元钱(下图蓝圆),很不幸同时又发生了严重的通货膨胀,银行存款利率达到了逆天的100%!

银行一般1年才付一次利息,根据下图,满1年后银行付给你1元利息(绿圆),存款余额=2元

这里写图片描述

银行发善心,每半年付利息,你可以把利息提前存入,利息生利息(红圆),1年存款余额=2.25元

这里写图片描述

假设银行超级实在,每4个月就付利息,利息生利息(下图红圆、紫圆),年底的余额≈2.37元

这里写图片描述

假设银行人品爆发,一年365天,愿意天天付利息,这样利滚利的余额≈2.71456748202元

假设银行丧心病狂的每秒付利息,你也丧心病狂的每秒都再存入,1年共31536000秒,利滚利的余额≈2.7182817813元

这个数越来越接近于e了!

哎呀!费了半天劲也没多挣几个钱啊!

对!1元存1年,在年利率100%下,无论怎么利滚利,其余额总有一个无法突破的天花板,这个天花板就是e,即:

e=limn(1+1n)n

自然对数的研究历史

上面例子的体例,和现行教科书类似,都是直接以极限方式定义e。然而,这并不是自然对数在历史上的研究路径。

从利息出发的复利计算,或者说求高次幂运算,在历史上催生了最早的对数表(1614年)。然而,这个问题本身和e并无直接关联,使用常用对数同样可以求解复利问题。

真正催生自然对数e的是对数表的编制过程。

对于那时期的人们来说,编制对数表是件巨大的工程,常需要花费数学家数年,甚至数十年的时间。

在大量的实践中,人们发现采用(1+1n)n,n0为底,可以很大程度的节省计算量。

事实上,最早的几个对数表的作者中,纳皮尔采用(1+1107)107的倒数为底,而比尔吉采用(1+1104)104为底。这两个数分别是1e和e的近似值。

从e到欧拉公式

早期的对数表作者虽然已经不自觉的享受e的好处,然而他们并没有明确发现或定义e。

e的定义有赖于微积分的发展。

十七世纪上半叶是微积分的萌芽时期,也可称为前牛顿-莱布尼茨时期。这里所提到的数学家,实际上只比牛顿、莱布尼茨,早一到两代人。

比如费马(Pierre de Fermat)在1636年之前,就知道:

a0xndx=an+1n+1,n1

于是人们自然会去思考:

a01xdx=?(1)

两个耶稣会教士Grégoire de Saint-Vincent和Alphonse Antonio de Sarasa发现:

a01xdx=klogy

这个发现表明,y=1x曲线下的面积和y的对数成正比。

William Oughtred认为,如果采用合适的数为底的话,就可以约去比例因子k。从而上式可变为:

a01xdx=lnx

他将这样形式的对数,称为自然对数。这实际上就是(1+1n)n节省计算量的原因。

William Oughtred,1575~1660,英国数学家。他对数学符号的发展产生很大的影响,现行的大于、小于符号就是他的发明。

到了John Bernoulli时代,积分问题扩展到如下形式:

dxax2+bx+c(2)

显然,这类问题可以通过配方换元法,转换成公式1的形式。然而,其中的要害在于,求解方程ax2+bx+c=0,而这个方程的解,有可能为复数。

出于解方程的需要,John Bernoulli系统研究了limn(1+1n)n的性质,并认为它是一个重要的常数。这个思想明显影响了他的学生Euler。

除此之外,在求解公式2的特例:

dxb2+x2(3)

John Bernoulli发现,可以令x=1b(t1)/(t+1),从而上式变为:

dt12bt(4)

公式3的积分是arctan,而公式4的积分是一个虚数的对数。利用这种方法,可以建立三角函数和虚数对数之间的关系。

这里需要指出的是,John Bernoulli对于复数的理解仍停留在Cardano的水平,这里的虚数对数和后面提及的复数指数、复数对数在内涵上是不同的,仅仅是种解方程的技巧而已。

1740年,Euler发现y=2cosxy=e1x+e1x是同一个微分方程的解,因此它们应该相等。

1743年,Euler进一步指出:

cosx=e1x+e1x2,sinx=e1xe1x21

最后,在1748年,Euler指出:

eix=cosx+isinx

虚数符号i虽然也是Euler的发明,但那是1777年以后的事情了。这里用的是现代的表示方法。

这个结果最早是Roger Cotes于1714年发现的,Euler算是重新发现。

从牛顿到John Bernoulli、Euler,无穷数列成为当时数学家的一项工具。上述等式中很多都是基于函数的无穷数列展开式的性质得出的。

但与现在主要采用泰勒展开式不同,当时更知名的展开公式是牛顿发明的二项式定理,泰勒展开式用的并不多。

复变Euler公式

Euler时代,人们虽然对于复数的性质做了颇多的探索,但仍难以逃脱“复数是解方程的技巧”的束缚。这主要体现在两个方面:

1.尽管Euler晚年已经有复平面的概念,但他对复数的几何意义研究甚少。在他看来,为复数这种因解代数方程而引入的技巧,提供一种几何解释,是一件不太自然的事情。

2.复数的实部和虚部是分开处理的,用途局限于求解实变量微积分。最典型的例子就是,Euler时代的Euler公式,其自变量x是实数。

之后,随着复平面、复数的向量表示逐渐被人接受,人们开始倾向于接受复数是一种数,而不仅仅是一种解方程的技巧。

在复数的系统化中,做出最大贡献的,当属Augustin-Louis Cauchy。

具体到Euler公式,Cauchy针对复变函数的特性,定义了如下规则:

f(z)为一复变函数,且满足:

1.f(z)在复平面内处处解析。

2.f(z)=f(z)

3.当Im(z)=0时,f(z)=ex,其中x=Re(z)

最终符合这一条件的函数为:

ex(cosy+isiny)

因此,复变Euler公式为:

ez=ex(cosy+isiny)

可见,与原始的Euler公式不同,复变Euler公式不是证明出来的,而是定义出来的

总结

1.Cardano解三次方程发明虚数。

2.高次幂运算催生对数表。

3.对数表的编制过程中,发现了e。

4.Euler根据无穷数列展开式,发现Euler公式。

5.Cauchy定义了复变Euler公式。

参考:

《古今数学思想》

《不可思议的e》

傅里叶变换

f^(ξ)=+f(x) e2πixξdx

傅里叶变换是最基本的频域变换,这里不再赘述,只是提供一些有意思的图示。

正弦波的叠加(傅里叶级数):

这里写图片描述

这里写图片描述

时域、频域、相位:

这里写图片描述

傅里叶级数与傅里叶变换:

这里写图片描述

欧拉公式:

这里写图片描述

欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。

正弦波的叠加,也可以理解为螺旋线的叠加在实数空间的投影。

这里写图片描述

参考:

https://zhuanlan.zhihu.com/p/19763358

一道证明题

设A、B、C为任意可数有限集合,则

size(AC)size(AB)+size(BC)

其中size(X)表示集合X中的元素个数。

证明:

AC={x|xAxC}={x|xA(xBxB)xC}={x|(xAxBxC)(xAxBxC)}{x|(xAxB)(xBxC)}=(AB)(BC)

又因为:size(XY)size(X)+size(Y),所以

size(AC)size((AB)(BC))size(AB)+size(BC)

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

完全搞懂傅里叶变换和小波(4)——欧拉公式及其证明

本节我们介绍欧拉公式,它是复变函数中非常重要的一个定理,同时对于傅立叶变换的理解也必不可少。我们在高等数学里学习的傅立叶级数通常都是用三角函数形式表示的,而傅立叶变换中的一般都是用幂指数形式的,欧拉公...

深度学习(一)——MP神经元模型, BP算法, 神经元激活函数, Dropout

深度学习(一)——MP神经元模型, BP算法, 神经元激活函数, Dropout

图像处理理论(一)——直方图、二值化、滤波基础

直方图、二值化、滤波基础

图像处理中的数学原理详解22——快速傅立叶变换算法FFT

傅立叶变换以高等数学(微积分)中的傅立叶级数为基础发展而来,它是信号处理(特别是图像处理)中非常重要的一种时频变换手段,具有重要应用。在图像编码、压缩、降噪、数字水印方面都有重要意义。此外,快速傅立叶...

傅里叶变换和正弦函数和欧拉公式

知识点:重点讲解正弦函数和欧拉公式的关系,以及它们在傅里叶变换中的作用,附加:傅里叶变换和卷积公式这是我第二次学习傅里叶变换,其实第一次就已经懂了时域和频域的关系,也知道一维傅里叶变换就是将一个函数转...

乱谈数学--傅里叶变换(级数)的原理(一)

乱谈数学--傅里叶变换(级数)的原理(一) 主页:www.cnblogs.com/liyiwen  一直都没有搞清楚傅里叶变换,那些公式一看就“懂”,但合上书就忘,...

在不看任何数学公式的情况下理解傅里叶分析

傅里叶变换何等高大上的东西,只要用心去看的话,真的可以看懂的。--在不看任何数学公式的情况下理解傅里叶分析,人工智能、信号处理必备基础技能 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身...
  • vshuang
  • vshuang
  • 2016年05月01日 20:09
  • 813

图像处理中的数学原理详解20——主成分变换(PCA)

主成份变换,PCA,K-L变换,卡洛南-洛伊变换,霍特林变换,尽管名字很多,但本质上它们都是一个东西。PCA是机器学习和数据挖掘中的一种方法,也是数字图像处理中用来进行编码和压缩的一种技术。本文介绍相...

不看任何数学公式,都可完全理解傅里叶分析

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成...

不看任何数学公式的情况下理解傅里叶分析

要让读者在不看任何数学公式的情况下理解傅里叶分析 一什么是频域 你眼中看似落叶纷飞变化无常的世界实际只是躺在上帝怀中一份早已谱好的乐章 二傅里叶级数Fourier Series的频谱 三傅里叶级数Fo...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数学狂想曲(一)——搞笑图片的数学原理, 欧拉公式, 傅里叶变换
举报原因:
原因补充:

(最多只允许输入30个字)