关闭

习题10-5 UVA - 1213 Sum of Different Primes 不同的素数之和(DP + 素数打表)

151人阅读 评论(0) 收藏 举报
分类:

大体题意:

选择K个质数,使他们的和等于N ,问有多少种选法!

思路:

N不大  小于等于1120

直接打一个素数表,然后dp

dp[i][j] 表示 选择j 个素数  构成i  方法数。

三层循环  第一层直接枚举素数,  第二层枚举选择的数量,第三层枚举构成的结果N。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn = 2000 + 5;
int dp[maxn][maxn/100];
int vis[maxn]; // 0 is prime!
void init(){
    int m = sqrt(maxn + 0.5);
    for (int i = 2; i <= maxn; ++i) if (!vis[i])
        for (int j = i * i; j <= maxn; j += i) vis[j] = 1;
    dp[0][0] = 1;
    vis[0] = vis[1] = 1;
    for (int i = 0; i <= maxn; ++i){
        if (vis[i])continue;
        for (int j = 14; j >= 1; --j){
            for (int k = maxn; k >= i; --k){
                dp[k][j] += dp[k-i][j-1];
            }
        }
    }
}
int main(){
    init();
    int n,k;
    while(scanf("%d%d",&n,&k) == 2 && (n||k))
        printf("%d\n",dp[n][k]);
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:142807次
    • 积分:7239
    • 等级:
    • 排名:第3276名
    • 原创:602篇
    • 转载:2篇
    • 译文:0篇
    • 评论:35条
    文章分类
    最新评论