关闭

社会化海量数据采集爬虫框架搭建

1090人阅读 评论(0) 收藏 举报
分类:

随着BIG DATA大数据概念逐渐升温,如何搭建一个能够采集海量数据的架构体系摆在大家眼前。如何能够做到所见即所得的无阻拦式采集、如何快速把不规则页面结构化并存储、如何满足越来越多的数据采集还要在有限时间内采集。这篇文章结合我们自身项目经验谈一下。

我们来看一下作为人是怎么获取网页数据的呢?

1、打开浏览器,输入网址url访问页面内容。
2、复制页面内容的标题、作者、内容。
3、存储到文本文件或者excel。

从技术角度来说整个过程主要为 网络访问、扣取结构化数据、存储。我们看一下用java程序如何来实现这一过程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import java.io.IOException;
import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.HttpException;
import org.apache.commons.httpclient.HttpStatus;
import org.apache.commons.httpclient.methods.GetMethod;
import org.apache.commons.lang.StringUtils;

public class HttpCrawler {
       public static void main(String[] args) {

            String content = null ;
             try {
                  HttpClient httpClient = new HttpClient();
                   //1、网络请求
                  GetMethod method = new GetMethod("http://www.baidu.com" );
                   int statusCode = httpClient.executeMethod(method);
                   if (statusCode == HttpStatus. SC_OK) {
                        content = method.getResponseBodyAsString();
                         //结构化扣取
                        String title = StringUtils.substringBetween(content, "<title>" , "</title>" );
                         //存储
                        Systemout .println(title);
                  }

            } catch (HttpException e) {
                  e.printStackTrace();
            } catch (IOException e) {
                  e.printStackTrace();
            } finally {
            }
      }
}

通过这个例子,我们看到通过httpclient获取数据,通过字符串操作扣取标题内容,然后通过system.out输出内容。大家是不是感觉做一个爬虫也还是蛮简单呢。这是一个基本的入门例子,我们再详细介绍怎么一步一步构建一个分布式的适用于海量数据采集的爬虫框架。

整个框架应该包含以下部分,资源管理、反监控管理、抓取管理、监控管理。看一下整个框架的架构图:

社会化海量数据抓取组件图

  • 资源管理指网站分类体系、网站、网站访问url等基本资源的管理维护;
  • 反监控管理指被访问网站(特别是社会化媒体)会禁止爬虫访问,怎么让他们不能监控到我们的访问时爬虫软件,这就是反监控机制了;

    一个好的采集框架,不管我们的目标数据在哪儿,只要用户能够看到都应该能采集到。所见即所得的无阻拦式采集,无论是否需要登录的数据都能够顺利采集。现在大部分社交网站都需要登录,为了应对登录的网站要有模拟用户登录的爬虫系统,才能正常获取数据。不过社会化网站都希望自己形成一个闭环,不愿意把数据放到站外,这种系统也不会像新闻等内容那么开放的让人获取。这些社会化网站大部分会采取一些限制防止机器人爬虫系统爬取数据,一般一个账号爬取不了多久就会被检测出来被禁止访问了。那是不是我们就不能爬取这些网站的数据呢?肯定不是这样的,只要社会化网站不关闭网页访问,正常人能够访问的数据,我们也能访问。说到底就是模拟人的正常行为操作,专业一点叫“反监控”。

    那一般网站会有什么限制呢?

    一定时间内单IP访问次数,没有哪个人会在一段持续时间内过快访问,除非是随意的点着玩,持续时间也不会太长。可以采用大量不规则代理IP来模拟。

    一定时间内单账号访问次数,这个同上,正常人不会这么操作。可以采用大量行为正常的账号,行为正常就是普通人怎么在社交网站上操作,如果一个人一天24小时都在访问一个数据接口那就有可能是机器人了。

    如果能把账号和IP的访问策略控制好了,基本可以解决这个问题了。当然对方网站也会有运维会调整策略,说到底这是一个战争,躲在电脑屏幕后的敌我双方,爬虫必须要能感知到对方的反监控策略进行了调整,通知管理员及时处理。未来比较理想应该是通过机器学习算法自动完成策略调整,保证抓取不间断。

  • 抓取管理指通过url,结合资源、反监控抓取数据并存储;我们现在大部分爬虫系统,很多都需要自己设定正则表达式,或者使用htmlparser、jsoup等软件来硬编码解决结构化抓取的问题。不过大家在做爬虫也会发现,如果爬取一个网站就去开发一个类,在规模小的时候还可以接受,如果需要抓取的网站成千上万,那我们不是要开发成百上千的类。为此我们开发了一个通用的抓取类,可以通过参数驱动内部逻辑调度。比如我们在参数里指定抓取新浪微博,抓取机器就会调度新浪微博网页扣取规则抓取节点数据,调用存储规则存储数据,不管什么类型最后都调用同一个类来处理。对于我们用户只需要设置抓取规则,相应的后续处理就交给抓取平台了。

    整个抓取使用了 xpath、正则表达式、消息中间件、多线程调度框架(参考)。xpath 是一种结构化网页元素选择器,支持列表和单节点数据获取,他的好处可以支持规整网页数据抓取。我们使用的是google插件 XPath Helper,这个玩意可以支持在网页点击元素生成xpath,就省去了自己去查找xpath的功夫,也便于未来做到所点即所得的功能。正则表达式补充xpath抓取不到的数据,还可以过滤一些特殊字符。消息中间件,起到抓取任务中间转发的目的,避免抓取和各个需求方耦合。比如各个业务系统都可能抓取数据,只需要向消息中间件发送一个抓取指令,抓取平台抓完了会返回一条消息给消息中间件,业务系统在从消息中间件收到消息反馈,整个抓取完成。多线程调度框架之前提到过,我们的抓取平台不可能在同一时刻只抓一个消息的任务;也不可能无限制抓取,这样资源会耗尽,导致恶性循环。这就需要使用多线程调度框架来调度多线程任务并行抓取,并且任务的数量,保证资源的消耗正常。

    不管怎么模拟总还是会有异常的,这就需要有个异常处理模块,有些网站访问一段时间需要输入验证码,如果不处理后续永远返回不了正确数据。我们需要有机制能够处理像验证码这类异常,简单就是有验证码了人为去输入,高级一些可以破解验证码识别算法实现自动输入验证码的目的。

    扩展一下 :所见即所得我们是不是真的做到?规则配置也是个重复的大任务?重复网页如何不抓取?

    1、有些网站利用js生成网页内容,直接查看源代码是一堆js。 可以使用mozilla、webkit等可以解析浏览器的工具包解析js、ajax,不过速度会有点慢。
    2、网页里有一些css隐藏的文字。使用工具包把css隐藏文字去掉。
    3、图片flash信息。 如果是图片中文字识别,这个比较好处理,能够使用ocr识别文字就行,如果是flash目前只能存储整个url。
    4、一个网页有多个网页结构。如果只有一套抓取规则肯定不行的,需要多个规则配合抓取。
    5、html不完整,不完整就不能按照正常模式去扣取。这个时候用xpath肯定解析不了,我们可以先用htmlcleaner清洗网页后再解析。
    6、 如果网站多起来,规则配置这个工作量也会非常大。如何帮助系统快速生成规则呢?首先可以配置规则可以通过可视化配置,比如用户在看到的网页想对它抓取数据,只需要拉开插件点击需要的地方,规则就自动生成好了。另在量比较大的时候可视化还是不够的,可以先将类型相同的网站归类,再通过抓取的一些内容聚类,可以统计学、可视化抓取把内容扣取出几个版本给用户去纠正,最后确认的规则就是新网站的规则。这些算法后续再讲。这块再补充一下(多谢zicjin建议)

    背景:如果我们需要抓取的网站很多,那如果靠可视化配置需要耗费大量的人力,这是个成本。并且这个交给不懂html的业务去配置准确性值得考量,所以最后还是需要技术做很多事情。那我们能否通过技术手段可以帮助生成规则减少人力成本,或者帮助不懂技术的业务准确的把数据扣取下来并大量复制。

    方案:先对网站分类,比如分为新闻、论坛、视频等,这一类网站的网页结构是类似的。在业务打开需要扣取的还没有录入我们规则库的网页时,他先设定这个页面的分类(当然这个也可以机器预先判断,他们来选择,这一步必须要人判断下),有了分类后,我们会通过“统计学、可视化判断”识别这一分类的字段规则,但是这个是机器识别的规则,可能不准确,机器识别完后,还需要人在判断一下。判断完成后,最后形成规则才是新网站的规则

    7、对付重复的网页,如果重复抓取会浪费资源,如果不抓需要一个海量的去重判断缓存。判断抓不抓,抓了后存不存,并且这个缓存需要快速读写。常见的做法有bloomfilter、相似度聚合、分类海明距离判断。

  • 监控管理指不管什么系统都可能出问题,如果对方服务器宕机、网页改版、更换地址等我们需要第一时间知道,这时监控系统就起到出现了问题及时发现并通知联系人。

目前这样的框架搭建起来基本可以解决大量的抓取需求了。通过界面可以管理资源、反监控规则、网页扣取规则、消息中间件状态、数据监控图表,并且可以通过后台调整资源分配并能动态更新保证抓取不断电。不过如果一个任务的处理特别大,可能需要抓取24个小时或者几天。比如我们要抓取一条微博的转发,这个转发是30w,那如果每页线性去抓取耗时肯定是非常慢了,如果能把这30w拆分很多小任务,那我们的并行计算能力就会提高很多。不得不提的就是把大型的抓取任务hadoop化,废话不说直接上图:

社会化海量数据抓取组件图

今天先写到这里,后续再介绍下 日均千万大型采集项目实战。

原创文章,转载请注明: 转载自LANCEYAN.COM

本文链接地址: 社会化海量数据采集爬虫框架搭建

Posted in hadoopjavajeecrawler技术架构.

JAVA线程池管理及分布式HADOOP调度框架搭建

平时的开发中线程是个少不了的东西,比如tomcat里的servlet就是线程,没有线程我们如何提供多用户访问呢?不过很多刚开始接触线程的开发攻城师却在这个上面吃了不少苦头。怎么做一套简便的线程开发模式框架让大家从单线程开发快速转入多线程开发,这确实是个比较难搞的工程。

那具体什么是线程呢?首先看看进程是什么,进程就是系统中执行的一个程序,这个程序可以使用内存、处理器、文件系统等相关资源。例如 QQ软件、eclipse、tomcat等就是一个exe程序,运行启动起来就是一个进程。为什么需要多线程?如果每个进程都是单独处理一件事情不能多个任务同时处理,比如我们打开qq只能和一个人聊天,我们用eclipse开发代码的时候不能编译代码,我们请求tomcat服务时只能服务一个用户请求,那我想我们还在原始社会。多线程的目的就是让一个进程能够同时处理多件事情或者请求。比如现在我们使用的QQ软件可以同时和多个人聊天,我们用eclipse开发代码时还可以编译代码,tomcat可以同时服务多个用户请求。

线程这么多好处,怎么把单进程程序变成多线程程序呢?不同的语言有不同的实现,这里说下java语言的实现多线程的两种方式:扩展java.lang.Thread类、实现java.lang.Runnable接口。
先看个例子,假设有100个数据需要分发并且计算。看下单线程的处理速度:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
package thread;

import java.util.Vector;

public class OneMain {
       public static void main(String[] args) throws InterruptedException {
            Vector<Integer> list = new Vector<Integer>(100);

             for (int i = 0; i < 100; i++) {
                  list.add(i);
            }

             long start = System.currentTimeMillis();
             while (list.size() > 0) {
                   int val = list.remove(0);
                  Threadsleep(100);//模拟处理
                  Systemout.println(val);
            }
             long end = System.currentTimeMillis();

            Systemout.println("消耗 " + (end - start) + " ms");

      }

       // 消耗 10063 ms
}

再看一下多线程的处理速度,采用了10个线程分别处理:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
package thread;

import java.util.Vector;
import java.util.concurrent.CountDownLatch;

public class MultiThread extends Thread {
     static Vector<Integer> list = new Vector<Integer>(100);
     static CountDownLatch count = new CountDownLatch(10);

     public void run() {

          while (list.size() > 0) {
               try {
                    int val = list.remove(0);
                    System.out.println(val);
                    Thread.sleep(100);//模拟处理
               } catch (Exception e) {
                    // 可能数组越界,这个地方只是为了说明问题,忽略错误
               }

          }
         
          count.countDown(); // 删除成功减一

     }

     public static void main(String[] args) throws InterruptedException {
         
          for (int i = 0; i < 100; i++) {
               list.add(i);
          }
         
          long start = System.currentTimeMillis();

          for (int i = 0; i < 10; i++) {
               new MultiThread().start();
          }

         

          count.await();
          long end = System.currentTimeMillis();
          System.out.println("消耗 " + (end - start) + " ms");

     }

     // 消耗 1001 ms
}

大家看到了线程的好处了吧!单线程需要10S,10个线程只需要1S。充分利用了系统资源实现并行计算。也许这里会产生一个误解,是不是增加的线程个数越多效率越高。线程越多处理性能越高这个是错误的,范式都要合适,过了就不好了。需要普及一下计算机硬件的一些知识。我们的cpu是个运算器,线程执行就需要这个运算器来运行。不过这个资源只有一个,大家就会争抢。一般通过以下几种算法实现争抢cpu的调度:

1、队列方式,先来先服务。不管是什么任务来了都要按照队列排队先来后到。
2、时间片轮转,这也是最古老的cpu调度算法。设定一个时间片,每个任务使用cpu的时间不能超过这个时间。如果超过了这个时间就把任务暂停保存状态,放到队列尾部继续等待执行。
3、优先级方式:给任务设定优先级,有优先级的先执行,没有优先级的就等待执行。

这三种算法都有优缺点,实际操作系统是结合多种算法,保证优先级的能够先处理,但是也不能一直处理优先级的任务。硬件方面为了提高效率也有多核cpu、多线程cpu等解决方案。目前看得出来线程增多了会带来cpu调度的负载增加,cpu需要调度大量的线程,包括创建线程、销毁线程、线程是否需要换出cpu、是否需要分配到cpu。这些都是需要消耗系统资源的,由此,我们需要一个机制来统一管理这一堆线程资源。线程池的理念提出解决了频繁创建、销毁线程的代价。线程池指预先创建好一定大小的线程等待随时服务用户的任务处理,不必等到用户需要的时候再去创建。特别是在java开发中,尽量减少垃圾回收机制的消耗就要减少对象的频繁创建和销毁。

之前我们都是自己实现的线程池,不过随之jdk1.5的推出,jdk自带了 java.util.concurrent并发开发框架,解决了我们大部分线程池框架的重复工作。可以使用Executors来建立线程池,列出以下大概的,后面再介绍。
newCachedThreadPool 建立具有缓存功能线程池
newFixedThreadPool 建立固定数量的线程
newScheduledThreadPool 建立具有时间调度的线程

有了线程池后有以下几个问题需要考虑:
1、线程怎么管理,比如新建任务线程。
2、线程如何停止、启动。
3、线程除了scheduled模式的间隔时间定时外能否实现精确时间启动。比如晚上1点启动。
4、线程如何监控,如果线程执行过程中死掉了,异常终止我们怎么知道。

考虑到这几点,我们需要把线程集中管理起来,用java.util.concurrent是做不到的。需要做以下几点:
1、将线程和业务分离,业务的配置单独做成一个表。
2、构建基于concurrent的线程调度框架,包括可以管理线程的状态、停止线程的接口、线程存活心跳机制、线程异常日志记录模块。
3、构建灵活的timer组件,添加quartz定时组件实现精准定时系统。
4、和业务配置信息结合构建线程池任务调度系统。可以通过配置管理、添加线程任务、监控、定时、管理等操作。
组件图为:
分布式调度框架-lanceyan.com

构建好线程调度框架是不是就可以应对大量计算的需求了呢?答案是否定的。因为一个机器的资源是有限的,上面也提到了cpu是时间周期的,任务一多了也会排队,就算增加cpu,一个机器能承载的cpu也是有限的。所以需要把整个线程池框架做成分布式的任务调度框架才能应对横向扩展,比如一个机器上的资源呢达到瓶颈了,马上增加一台机器部署调度框架和业务就可以增加计算能力了。好了,如何搭建?如下图:
分布式调度框架-lanceyan.com

基于jeeframework我们封装spring、ibatis、数据库等操作,并且可以调用业务方法完成业务处理。主要组件为:
1、任务集中存储到数据库服务器
2、控制中心负责管理集群中的节点状态,任务分发
3、线程池调度集群负责控制中心分发的任务执行
4、web服务器通过可视化操作任务的分派、管理、监控。

一般这个架构可以应对常用的分布式处理需求了,不过有个缺陷就是随着开发人员的增多和业务模型的增多,单线程的编程模型也会变得复杂。比如需要对1000w数据进行分词,如果这个放到一个线程里来执行,不算计算时间消耗光是查询数据库就需要耗费不少时间。有人说,那我把1000w数据打散放到不同机器去运算,然后再合并不就行了吗?因为这是个特例的模式,专为了这个需求去开发相应的程序没有问题,但是以后又有其他的海量需求如何办?比如把倒退3年的所有用户发的帖子中发帖子最多的粉丝转发的最高的用户作息时间取出来。又得编一套程序实现,太麻烦!分布式云计算架构要解决的就是这些问题,减少开发复杂度并且要高性能,大家会不会想到一个最近很热的一个框架,hadoop,没错就是这个玩意。hadoop解决的就是这个问题,把大的计算任务分解、计算、合并,这不就是我们要的东西吗?不过玩过这个的人都知道他是一个单独的进程。不是!他是一堆进程,怎么和我们的调度框架结合起来?看图说话:
task31

基本前面的分布式调度框架组件不变,增加如下组件和功能:
1、改造分布式调度框架,可以把本身线程任务变成mapreduce任务并提交到hadoop集群。
2、hadoop集群能够调用业务接口的spring、ibatis处理业务逻辑访问数据库。
3、hadoop需要的数据能够通过hive查询。
4、hadoop可以访问hdfs/hbase读写操作。
5、业务数据要及时加入hive仓库。
6、hive处理离线型数据、hbase处理经常更新的数据、hdfs是hive和hbase的底层结构也可以存放常规文件。

这样,整个改造基本完成。不过需要注意的是架构设计一定要减少开发程序的复杂度。这里虽然引入了hadoop模型,但是框架上开发者还是隐藏的。业务处理类既可以在单机模式下运行也可以在hadoop上运行,并且可以调用spring、ibatis。减少了开发的学习成本,在实战中慢慢体会就学会了一项新技能。

界面截图:
task4

原创文章,转载请注明: 转载自LANCEYAN.COM

本文链接地址: JAVA线程池管理及分布式HADOOP调度框架搭建

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:33461次
    • 积分:419
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:51篇
    • 译文:0篇
    • 评论:0条
    文章分类