Stanford机器学习---第九讲. 聚类

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。内容大多来自Standford公开课machine learning中Andrew老师的讲解和其他书籍的借鉴。(https://class.coursera.org/ml/class/index


PS: 前一段时间因为去北京参加一个summer school就没有来得及写blog,让大家久等了……今天我们来讲讲Machine Learning中的聚类问题。:-)

第九讲. 聚类——Clustering


===============================

(一)、什么是无监督学习?

(二)、KMeans聚类算法

(三)、Cluster问题的(distortion)cost function

(四)、如何选择初始化时的类中心

(五)、聚类个数的选择




=====================================

(一)、什么是无监督学习


之前的几章我们只涉及到有监督学习,本章中,我们通过讨论另一种Machine learning方式:无监督学习。首先呢,我们来看一下有监督学习与无监督学习的区别。

给定一组数据(input,target)为Z=(X,Y)。

有监督学习:最常见的是regression & classification。

  • regression:Y是实数vector。回归问题,就是拟合(X,Y)的一条曲线,使得下式cost function L最小。


  • classification:Y是一个finite number,可以看做类标号。分类问题需要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。

,其中fi(X)=P(Y=i | X);


无监督学习:无监督学习的目的是学习一个function f,使它可以描述给定数据的位置分布P(Z)。 包括两种:density estimation & clustering.

  • density estimation就是密度估计,估计该数据在任意位置的分布密度
  • clustering就是聚类,将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。由于不需要事先根据训练数据去train聚类器,故属于无监督学习。
  • PCA和很多deep learning算法都属于无监督学习。

好了,大家理解了吧,unsupervised learning也就是不带类标号的机器学习

练习:








=====================================

(二)、K-Means聚类算法


KMeans是聚类算法的一种,先来直观的看一下该算法是怎样聚类的。给定一组数据如下图所示,K-Means算法的聚类流程如图:





图中显示了Kmeans聚类过程,给定一组输入数据{x(1),x(2),...,x(n)}和预分类数k,算法如下:

首先随机指定k个类的中心U1~Uk,然后迭代地更新该centroid。

其中,C(i)表示第i个数据离那个类中心最近,也就是将其判定为属于那个类,然后将这k各类的中心分别更新为所有属于这个类的数据的平均值








=====================================

(三)、Cluster问题的(distortion)cost function


在supervised learning中我们曾讲过cost function,类似的,在K-means算法中同样有cost function,我们有时称其为distortion cost function.

如下图所示,J(C,U)就是我们要minimize的function.


即最小化所有数据与其聚类中心的欧氏距离和。

再看上一节中我们讲过的KMeans算法流程,第一步为固定类中心U,优化C的过程:


第二步为优化U的过程:


这样进行迭代,就可以完成cost function J的优化。

练习:



这里大家注意,回归问题中有可能因为学习率设置过大产生随着迭代次数增加,cost function反倒增大的情况。但聚类是不会产生这样的问题的,因为每一次聚类都保证了使J下降,且无学习率做参数。






=====================================

(四)、如何选择初始化时的类中心

在上面的kmeans算法中,我们提到可以用randomly的方法选择类中心,然而有时效果并不是非常好,如下图所示:

fig.1. original data

对于上图的这样一组数据,如果我们幸运地初始化类中心如图2,


fig.2. lucky initialization


fig.3. unfortunate initialization

但如果将数据初始化中心选择如图3中的两种情况,就悲剧了!最后的聚类结果cost function也会比较大。针对这个问题,我们提出的solution是,进行不同initialization(50~1000次),每一种initialization的情况分别进行聚类,最后选取cost function J(C,U)最小的作为聚类结果







=====================================

(五)、聚类个数的选择

How to choose the number of clusters? 这应该是聚类问题中一个头疼的part,比如KMeans算法中K的选择。本节就来解决这个问题。

最著名的一个方法就是elbow-method,做图k-J(cost function)如下:



若做出的图如上面左图所示,那么我们就找图中的elbow位置作为k的选定值,如果像右图所示并无明显的elbow点呢,大概就是下图所示的数据分布:


这种情况下需要我们根据自己的需求来进行聚类,比如Tshirt的size,可以聚成{L,M,S}三类,也可以分为{XL,L,M,S,XS}5类。需要大家具体情况具体分析了~

练习:





==============================================
小结

本章讲述了Machine learning中的又一大分支——无监督学习,其实大家对无监督学习中的clustering问题应该很熟悉了,本章中讲到了几个significant points就是elbow 方法应对聚类个数的选择和聚类中心初始化方法,值得大家投入以后的应用。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值