KNN分类器

原创 2015年07月07日 10:56:45

KNN学习(K-Nearest Neighbor algorithm,K最邻近方法 )是一种统计分类器,对数据的特征变量的筛选尤其有效。

基本原理

KNN的基本思想是:输入没有标签(标注数据的类别),即没有经过分类的新数据,首先提取新数据的特征并与测试集中的每一个数据特征进行比较;然后从测试集中提取K个最邻近(最相似)的数据特征标签,统计这K个最邻近数据中出现次数最多的分类,将其作为新的数据类别。
KNN的这种基本思想有点类似于生活中的“物以类聚,人以群分”。
在KNN学习中,首先计算待分类数据特征与训练数据特征之间的距离并排序,取出距离最近的K个训练数据特征;然后根据这K个相近训练数据特征所属类别来判定新样本类别:如果它们都属于一类,那么新的样本也属于这个类;否则,对每个候选类别进行评分,按照某种规则确定新的样本的类别。笔者借用下面这个图来做更形象的解释:
这里写图片描述
如上图,图中最小的那个圆圈代表新的待分类数据,三角形和矩形分别代表已知的类型,现在需要判断圆圈属于菱形那一类还是矩形那一类。但是我该以什么样的依据来判断呢?

  1. 看离圆形最近(K=1)的那个类型是什么,由图可知,离圆形最近的是三角形,故将新数据判定为属于三角形这个类别。
  2. 看离圆形最近的3个数据(K=3)的类型是什么,由图可知离圆形最近的三个中间有两个是矩形,一个是三角形,故将新数据判定为属于矩形这个类别。
  3. 看离圆形最近的9个数据(K=9)的类型是什么,由图可知离圆形最近的9个数据中间,有五个是三角形,四个是矩形,故新数据判定为属于三角形这个类别。

上面所说的三种情况也可以说成是1-近邻方法、3-近邻方法、9-近邻方法。。。当然,K还可以取更大的值,当样本足够多,且样本类别的分布足够好的话,那么K值越大,划分的类别就越正确。而KNN中的K表示的就是划分数据时,所取相似样本的个数。
我们都知道,当K=1时,其抗干扰能力就较差,因为假如样本中出现了某种偶然的类别,那么新的数据很有可能被分错。为了增加分类的可靠性,可以考察待测数据的K个最近邻样本 ,统计这K个近邻样本中属于哪一类别的样本最多,就将样本X判属于该类。
当然,如果在样本有限的情况下,KNN算法的误判概率和距离的具体测度方法就有了直接关系。即用何种方式判定哪些数据与新数据近邻。不同的样本选择不同的距离测量函数,这能够提高分类的正确率。通常情况下,KNN可以采用Euclidean(欧几里得)、Manhattan(曼哈顿)、Mahalanobis(马氏距离)等距离用于计算。

  • Euclidean距离为:
    d(x⃗ ,y⃗ )=[i=1n(xiyi)2]
    x⃗ =(x1,x2,...,xn)
    y⃗ =(y1,y2,...,yn)
  • Manhattan距离为:
    d(x⃗ ,y⃗ )=i=1n|xiyi|
  • Mahalanobis距离为:
    d(x⃗ ,y⃗ )=(x⃗ y⃗ )V1(x⃗ y⃗ )
    其中n为特征的维数,Vx⃗ y⃗ 所在的数据集的协方差函数。

下面给出KNN学习的伪代码:

Algorithm  KNN(A[n],k,x)
    Input:
        A[n]为N个训练样本的特征,K为近邻数,x为新的样本;
    Initialize:
        取A[1]~A[k]作为x的初始近邻;
        计算测试样本与x间的欧式距离d(x,A[i]),i=1,2...,k;
        按d(x,A[i])升序排序;
        计算最远样本与x间距离D,即max{d(x,A[i])};
    for(i=k+1;i<=n;i++)
        计算A[i]与x之间的距离d(x,A[i]);
        if (d(x,A[i]))<D  then  用A[i]代替最远样本;
        按照d(x,A[i])升序排序;
        计算最远样本与x间的距离D,即max{d(x,A[i])};
    End for
    计算前K个样本A[i],i=1,2...,k所属类别的概率;
    具有最大概率的类别即为样本x的类;
    Output:x所属的类别。

KNN的不足

1、加入某些类别的样本容量很大,而其他类样本容量很小,即已知的样本数量不均衡,有可能当输入一个和小容量类相同的的新样本时,该样本的K个近邻中,大容量类的样本占多数,从而导致误分类。
针对此种情况可以采用加权的方法,即和该样本距离小的近邻所对应的权值越大,将权值纳入分类的参考依据。
2、分类时需要先计算待分类样本和全体已知样本的距离,才能求得所需的K近邻点,计算量较大,尤其是样本数量较多时。
针对这种情况可以事先对已知样本点进行剪辑,去除对分类作用不大的样本,这一处理步骤仅适用于样本容量较大的情况,如果在原始样本数量较少时采用这种处理,反而会增加误分类的概率。

改进的KNN算法

KNN学习容易受噪声影响,尤其是样本中的孤立点对分类或回归处理有很大的影响。因此通常也对已知样本进行滤波和筛选,去除对分类有干扰的样本。

K值得选取也会影响分类结果,因此需根据每类样本的数目和分散程度选取合理的K值,并且对不同的应用也要考虑K值得选择。

基于组合分类器的KNN改进算法

常用的组合分类器方法有投票法、非投票法、动态法和静态法等,比如简单的投票法中所有的基分类器对分类采取相同的权值;权值投票法中每个基分类器具有相关的动态权重,该权重可以随时间变化。

首先随机选择属性子集,构建多个K近邻分类器;然后对未分类元组进行分类;最后把分类器的分类结果按照投票法进行组合,将得票最多的分类器作为最终组合近邻分类器的输出。

基于核映射的KNN改进算法

将原空间Rn中的样本x映射到一个高维的核空间F中,突出不同类别样本之间的特征差异出,使得样本在核空间中变得线性可分或者近似线性可分,其流程如下所示:
首先进行非线性映射:

Φ:RnF,xΦ(x)
然后在高维的核空间,待分类的样本变为(Φ(x1),...,Φ(xn)),任意两个样本Φ(xi)Φ(xj)之间的距离为:
Φ(xi)Φ(xj)2=K(xi,xi)+K(xj,xj)
其中K(,)为核函数,在此基础上进行KNN分类。

实践代码

下面给出一个简单的KNN分类的MATLAB实践代码:
main.m文件

function main
trainData = [
    0.6213    0.5226    0.9797    0.9568    0.8801    0.8757    0.1730    0.2714    0.2523
    0.7373    0.8939    0.6614    0.0118    0.1991    0.0648    0.2987    0.2844    0.4692
    ];
trainClass = [
    1     1     1     2     2     2     3     3     3
    ];
testData = [
    0.9883    0.5828    0.4235    0.5155    0.3340
    0.4329    0.2259    0.5798    0.7604    0.5298
    ];

% main
testClass = cvKnn(testData, trainData, trainClass);

% plot prototype vectors
classLabel = unique(trainClass);
nClass     = length(classLabel);
plotLabel = {'r*', 'g*', 'b*'};
figure;
for i=1:nClass
    A = trainData(:, trainClass == classLabel(i));
    plot(A(1,:), A(2,:), plotLabel{i});
    hold on;
end

% plot classifiee vectors
plotLabel = {'ro', 'go', 'bo'};
for i=1:nClass
    A = testData(:, testClass == classLabel(i));
    plot(A(1,:), A(2,:), plotLabel{i});
    hold on;
end
legend('1: prototype','2: prototype', '3: prototype', '1: classifiee', '2: classifiee', '3: classifiee', 'Location', 'NorthWest');
title('K nearest neighbor');
hold off;

KNN.m文件

function [Class, Rank] = cvKnn(X, Proto, ProtoClass, K, distFunc)
if ~exist('K', 'var') || isempty(K)
    K = 1;%默认为K = 1
end
if ~exist('distFunc', 'var') || isempty(distFunc)
    distFunc = @cvEucdist;
end
if size(X, 1) ~= size(Proto, 1)
    error('Dimensions of classifiee vectors and prototype vectors do not match.');
end
[D, N] = size(X);

% Calculate euclidean distances between classifiees and prototypes
d = distFunc(X, Proto);

if K == 1, % sort distances only if K>1
    [mini, IndexProto] = min(d, [], 2); % 2 == row%每列的最小元素
    Class = ProtoClass(IndexProto);
    if nargout == 2, % instance indices in similarity descending order
        [sorted, ind] = sort(d'); % PxN
        RankIndex = ProtoClass(ind); %,e.g., [2 1 2 3 1 5 4 1 2]'
        % conv into, e.g., [2 1 3 5 4]'
        for n = 1:N
            [ClassLabel, ind] = unique(RankIndex(:,n),'first');
            [sorted, ind] = sort(ind);
            Rank(:,n) = ClassLabel(ind);
        end
    end
else
    [sorted, IndexProto] = sort(d'); % PxN
    clear d;
    % K closest
    IndexProto = IndexProto(1:K,:);
    KnnClass = ProtoClass(IndexProto);
    % Find all class labels
    ClassLabel = unique(ProtoClass);
    nClass = length(ClassLabel);
    for i = 1:nClass
        ClassCounter(i,:) = sum(KnnClass == ClassLabel(i));
    end
    [maxi, winnerLabelIndex] = max(ClassCounter, [], 1); % 1 == col
    % Future Work: Handle ties somehow
    Class = ClassLabel(winnerLabelIndex);
end

Eucdist.m文件

function d = cvEucdist(X, Y)
 if ~exist('Y', 'var') || isempty(Y)
     %% Y = zeros(size(X, 1), 1);
     U = ones(size(X, 1), 1);
     d = abs(X'.^2*U).'; return;
 end
 V = ~isnan(X); X(~V) = 0; % V = ones(D, N); 
 %clear V;
 U = ~isnan(Y); Y(~U) = 0; % U = ones(D, P); 
 %clear U;
 %d = abs(X'.^2*U - 2*X'*Y + V'*Y.^2);
 d1 = X'.^2*U;
 d3 = V'*Y.^2;
 d2 = X'*Y;
 d = abs(d1-2*d2+d3);

代码效果如下:
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。转载请注明出处:http://blog.csdn.net/autocyz?viewmode=contents——autocyz

K近邻k-Nearest Neighbor(KNN)算法的理解

一、KNN算法概述 KNN作为一种有监督分类算法,是最简单的机器学习算法之一,顾名思义,其算法主体思想就是根据距离相近的邻居类别,来判定自己的所属类别。算法的前提是需要有一个已被标记类别的训练数据集,...
  • helloworld6746
  • helloworld6746
  • 2016年03月07日 10:25
  • 6140

kNN(K-Nearest Neighbor)最邻近规则分类

KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近; K最近邻(k-Nearest Neigh...
  • xlm289348
  • xlm289348
  • 2013年05月02日 16:26
  • 82087

KNN分类器

KNN即K-Nearest Neighbor,是数据挖掘中一种最简单的分类方法,即要判断某一个样本属于已知样本种类中的哪一类时,通过计算找出所有样本中与测试样本最近或者最相似的K个样本,统计这K个样本...
  • zhongkejingwang
  • zhongkejingwang
  • 2015年03月08日 14:17
  • 3553

KNN 分类器原理

一、算法概述 1、kNN算法又称为k近邻分类(k-nearest neighbor classification)算法。 最简单平凡的分类器也许是那种死记硬背式的分类器,记住所有的训练数据,对于新...
  • Jake_cai
  • Jake_cai
  • 2017年04月14日 09:44
  • 939

【模式识别】K-近邻分类算法KNN

K-近邻(K-Nearest Neighbors, KNN)是一种很好理解的分类算法,简单说来就是从训练样本中找出K个与其最相近的样本,然后看这K个样本中哪个类别的样本多,则待判定的值(或说抽样)就属...
  • xiaowei_cqu
  • xiaowei_cqu
  • 2014年04月15日 20:19
  • 42586

knn分类器c++实现(含测试数据IRIS)

  • 2014年06月19日 12:13
  • 719KB
  • 下载

人车分类识别 HOG特征+KNN分类器

  • 2016年09月06日 09:49
  • 6.96MB
  • 下载

用Python开始机器学习(4:KNN分类算法)

KNN分类算法(K-Nearest-Neighbors Classification)是
  • lsldd
  • lsldd
  • 2014年11月23日 17:24
  • 42884

应用机器学习(二):k-NN 分类器

本讲介绍 K- 近邻分类器的原理,并将它应用于著名的鸢尾花数据集分类。
  • wong2016
  • wong2016
  • 2017年04月23日 05:06
  • 920

MatLab2012b/MatLab2013b 分类器大全(svm,knn,随机森林等)

train_data是训练特征数据, train_label是分类标签。Predict_label是预测的标签。MatLab训练数据, 得到语义标签向量 Scores(概率输出)。1.逻辑回归(多项式...
  • abcjennifer
  • abcjennifer
  • 2013年12月05日 10:50
  • 49077
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:KNN分类器
举报原因:
原因补充:

(最多只允许输入30个字)