关闭

奇怪的分组(stone)

301人阅读 评论(0) 收藏 举报
分类:

背景描述:

终于解出了dm同学的难题,dm同学同意帮v神联络。可dm同学有个习惯,就是联络同学的时候喜欢分组联络,而且分组的方式也很特别,要求第i组的的人数必须大于他指定的个数ci。在dm同学联络的时候,v神在想,按照dm同学的规则一共可以有多少种方案呢?他想啊想,终于……没想出来。于是他又想到了聪明的你,你能帮v神算出按照dm同学的规则有多少种分组方案吗?

题目描述:

v神的班级共有n个人,dm同学想把同学分成M组联络,要求第i组的人数必须大于给定的正整数Ci,求有多少不同的方案?(两个是相同的方案当且仅当对于任意的一队i,两个方案的第i组同学数量相等)由于结果很大,所以你只需要输出模1000000007的值。

 

输入格式:

第一行两个整数N和M ,后面有M行,每行一个整数,表示Ci

 

输出格式:

仅有一行,一个整数,方案数模1000000007的值。

 

样例输入:

10 3

1

2

3

 

 

样例输出:

3

 

样例解释:

方案有三种,每堆的个数分别是(3,3,4),(2,4,4),(2,3,5)。

 

数据范围约定:

对于30%的数据,N ,M<= 10

对于60%的数据,N ,M<=1000

对于100%的数据,N ,M<= 1000000 Ci<=1000

数据保证至少有一个方案


由组合的知识得答案是C(N-sigma(ci)-1,m-1),然后大数据不知道怎么搞,用前辈的模板可以A,数论知识还是太弱了,慢慢研究

前辈的模板qingyezhu


#include<iostream>
#include<cstring>
#define LL long long
#define N 1000010
using namespace std;
const long long  r=1000000007;
int x, y;
long long n,m;
void extend_gcd(int a, int b) {
    int xx;
    if (b == 0) {
        x = 1, y = 0;
        return;
    }
    extend_gcd(b, a % b);
    xx = x;
    x = y, y = xx - a / b * y;
}
int C(int a, int b, int p) {
    int i;
    LL resa, resb, res;
    if (b > a) {
        return 0;
    }
    for (i = 0, resa = 1, resb = 1; i < b; i++) {
        resa = resa * (a - i) % p, resb = resb * (b - i) % p;
    }
     extend_gcd(resb, p);
     res = (LL) x;
     res = (res % p + p) % p;
    res = res * resa % p;
    return (int) res;
}
void solve(int n, int m, int p) {
    int a, b;
    LL res;
    res = 1;
    while (n || m) {
        a = n % p, b = m % p;
        res = res * C(a, b, p) % p;
        n /= p, m /= p;
    }
    printf("%I64d\n", res);
}
int main()
{
	freopen("stone.in","r",stdin);
	freopen("stone.out","w",stdout);
	
	long long t,ans=0;
	scanf("%I64d%I64d",&n,&m);
	for (int i=0;i<m;++i) 
	{
		scanf("%I64d",&t);
		n-=t;
	}
	n-=1,m-=1;
	solve(n,m,r);
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2360次
    • 积分:100
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档