【算法】高精度计算π(pi)值

😀大家好,我是白晨,一个不是很能熬夜😫,但是也想日更的人✈。如果喜欢这篇文章,点个赞👍,关注一下👀白晨吧!你的支持就是我最大的动力!💪💪💪

在这里插入图片描述


📔前言


π π π 一直是一个备受数学界青睐的数字。从古至今,无数的学者都在努力探求着 π π π 精确值。🤼‍♂️从祖冲之到欧拉,📖从圣经到《数理精蕴》,从东至西,历经几千年的发展,特别是在计算机发明之后,对于 π π π 的求解可以说是一日千里,现在计算到几十亿位以后已经不值得惊讶。

🧐这篇文章,白晨想带大家去了解利用计算机求解 π π π 的一种方法,其中涉及到 C++,链表,大数四则运算等知识点。我会尽可能详细的讲解每一个难点的实现。

题目参考:

在这里插入图片描述

这次我们的最低目标是在3000ms的限制内,实现计算 π π π 到小数点后500位。


📕1.公式选择


首先,如果不清楚如何计算 π π π 的同学可以先参考下面的文章,有助于理解下面的公式选择。

π 是怎么算出来的?

相信大家看完后已经对 π π π 的求法有一定的认识了,所以这里给出几个关于 π π π 的几个公式:

在这里插入图片描述

我们这里选择第三个公式,为什么呢?

当然是因为第三个公式是题目给出的反正切函数的幂次展开式啦(bushi)

其实是因为第三个公式是线性收敛,平均每计算一次就会得到0.3个有效数字,相比于第四个 a r c t a n x arctanx arctanx泰勒展开公式(莱布尼茨公式)来说,效率上会高出很多,而且最重要的一点是它比较容易实现,递推公式如下:

在这里插入图片描述

将其展开就是第三个公式,大家可以对比着看。

关于 a r c t a n x arctanx arctanx泰勒展开计算 π π π 可以参考此篇文章:π的计算

反正切函数的幂次展开式的推导具体过程:

在这里插入图片描述


📗2.实现难点解析


  • 关于大数实现:

这里我们选择 C++ 模板中的 list 类来实现(也可以使用string类等,只要可以进行大数四则运算就可以,这里为了符合题意使用链表),由于 π π π 的整数部分为3,所以我们只需要一位来存储整数部分,也即front存储整数部分,其余小数点以后的位顺次向后连接。

我们的核心目标是要实现:

在这里插入图片描述

我们将上面的任务拆开,分解成一个个独立的任务

  • R ( n ) ∗ n R(n) * n R(n)n

这里我们选择模拟竖式乘法:

  • 从链表尾结点开始,每个结点的数乘n。
  • 结点中只能存放个位数,所以当乘得结果大于等于10,需要保存进位。
  • 每次计算乘法时,还需要加上前一个数的进位。
  • 循环上述过程,直到头节点。

在这里插入图片描述

  • R ( n ) ∗ n / ( 2 ∗ n + 1 ) R(n) * n/(2*n+1) R(n)n/2n+1

这里我们选择模拟竖式除法:

  • 用上面乘法得到的结果除以(2n + 1)。
  • 除法与乘法相反,我们要从头节点开始除法。
  • 每一位除以(2n + 1)得到的结果就是:(此节点的值 + 上一个结点的余数*10) /(2n + 1)。
  • 再保存这个结点除以(2n + 1)后所得的余数。
  • 循环上述过程,直到尾节点

此处不再演示,大家可以类比乘法动手模拟一下,其实非常相似,代码也很相似。

  • S u m ( n + 1 ) = S u m ( n ) + R ( n + 1 ) Sum(n + 1) = Sum(n) + R(n + 1) Sum(n+1)=Sum(n)+R(n+1)

这就是递推公式的最后一步,将上面计算得到的 R ( n + 1 ) R(n+1) R(n+1) 加到 S u m ( n ) Sum(n) Sum(n) 上,这其实就是一个大数加法的问题,我们选择模拟竖式加法:

  • 从最低位开始, R ( n + 1 ) R(n+1) R(n+1) S u m ( n ) Sum(n) Sum(n) 对应的位相加。
  • 相加得到的值如果大于等于10,需要进位。
  • 对应位相加得到的结果需要加上进位
  • 循环上述过程,直到头节点

此过程与乘法非常相近,在后面的代码实现中我们可以看出。

  • 关于链表结点个数

链表结点数代表着小数点后的位数,所以当然是结点越多越精确,但是结点数太多会影响性能。如果我们要实现500位的精确值,我的建议是创建550~600个结点即可。

  • 关于要迭代的次数

这里有两种根据所求精度估算大致的迭代的次数的方法:

  1. 估算精度

    int count(int n) 
    {
    	int i = 1;
    	double sum = 0;
    	int a, b;
    	while(1)
    	{
    		a = 2 * i + 1;
    		b = i;
    		sum = sum + log10(a / b);
    		i++;
    		if (sum > n + 1) {
    			return i;
    		}
    	}
    }
    

    参考文章:数据结构实验1.2—高精度计算PI值(西工大)

  2. 估算有效数字

在这里插入图片描述

int count(int n)
{
	double ret = (double)n;
	return (int)(ret / 0.3);
}

参考文章:目前求 π 的算法中哪种收敛最快?

以上两种方法都可以使用,根据我在release发布版本的测试下,两种方法没有数量级的差别,所以使用哪一种都可以。

注:如果要提升精度,必须也增大结点个数,不能只增加迭代次数

测试结果:

方法一:
在这里插入图片描述

方法二:
在这里插入图片描述


📘3.代码实现


#include <time.h>
#include <iostream>
#include <list>
#include<math.h>
using namespace std;

// 估测要计算的次数
// 方法一:
int count(int n) 
{
	int i = 1;
	double sum = 0;
	int a, b;
	while(1)
	{
		a = 2 * i + 1;
		b = i;
		sum = sum + log10(a / b);
		i++;
		if (sum > n + 1) {
			return i;
		}
	}
}

// 方法二:
int count(int n)
{
	double ret = (double)n;
	return (int)(ret / 0.3);
}

int main()
{
// 定义我们需要多少个结点
#define NODE_NUM 550
	list<int> num(NODE_NUM, 0);// 存放R(n)
	list<int> sum(NODE_NUM, 0);// 存放Sum(n)
	int print;// 所需精度
	cin >> print;
	int cnt = count(print);// 所需迭代次数
    
	// 我们直接将 R(1) 初始化为2,这样就可以免去后面再统一乘2
	num.front() = 2;
	sum.front() = 2;
	
	// 这里循环的 i 就是 n 
	for (int i = 1; i <= cnt; ++i)
	{			
		int ret = 0;// 记录进位,补位情况

	 // 计算R(n + 1)
	
		// 计算 R(n) * n
		for (list<int>::reverse_iterator cur1 = num.rbegin(); cur1 != num.rend(); cur1++)
		{
            // 每一位都是本位乘i,再加上进位
			int val = *cur1 * i + ret;
            // 保存进位
			ret = val / 10;
            // 保存本位
			*cur1 = val % 10;
		}

		ret = 0;
		// 计算 R(n) * n / (2n + 1)
		for (list<int>::iterator cur1 = num.begin(); cur1 != num.end(); cur1++)
		{
            // 除数
			int div = (i << 1) + 1;
            // 加上前一位的余数
			int val = *cur1 + ret * 10;
            // 除法,保存本位
			*cur1 = val / div;
            // 保存余数
			ret = val - *cur1 * div;
		}

		ret = 0;
		// 计算 sum += R(n + 1)
		for (auto cur2 = sum.rbegin(), cur1 = num.rbegin(); cur2 != sum.rend(); cur2++, cur1++)
		{
            // 大数加法
			int val = *cur1 + *cur2 + ret;
			*cur2 = val % 10;
			ret = val / 10;
		}
	
	}
	// 打印
	cout << sum.front() << '.';
	list<int>::iterator it = sum.begin();
	it++;

	int i = 0;
	while (i < print)
	{
		cout << *it;
		it++;
		i++;
	}
	
	return 0;
}

📙后记


这个方法其实还是有改进的细节,比如:

  1. 将输入输出更换为scanf和printf,因为其实在效率上 cin和cout 比前者慢了几十倍,在输出大型数字时,效率会受影响。
  2. 公式限制,其实比反正切幂次展开更高效的公式还是很多,这里只是为了实现简单和逻辑清晰而选择了反正切幂次展开,大家有兴趣可以参考下图公式自己去实现。

在这里插入图片描述

参考文章:目前求 π 的算法中哪种收敛最快?


这是一个新的系列 ——【算法】,想来想去将这个计算 π π π 的文章放到了【算法】系列的开篇。因为其中确实有不少算法的实现,并且难度不是很大,很适合想学习C++或者算法的入门学习,在探求 π π π 的实践中一路学习高数🦄和编程(bushi)。

如果解析有不对之处还请指正,我会尽快修改,多谢大家的包容。

如果大家喜欢这个系列,还请大家多多支持啦😋!

如果这篇文章有帮到你,还请给我一个大拇指 👍和小星星 ⭐️支持一下白晨吧!喜欢白晨【算法】系列的话,不如关注👀白晨,以便看到最新更新哟!!!

我是不太能熬夜的白晨,我们下篇文章见。

圆周率&pi;的计算历程可以追溯到公元前20世纪,当时古埃及人就已经开始研究圆周率的。随着时间的推移,人们不断尝试各种方法来计算&pi;的,包括使用几何方法、概率方法、级数方法和积分方法等。下面列举一些主要的计算&pi;的方法: 1. 几何方法:最早期的计算&pi;的方法就是几何方法,即通过将圆的周长与直径相除来计算&pi;的。这个方法的精度不高,但是很简单易行。 2. 概率方法:蒙特卡罗方法是一种概率方法,可以用来估计&pi;的。这个方法的原理是,将一个正方形内切一个圆,然后随机产生大量的点,统计落在圆内的点的数量,以此来估算&pi;的。 3. 级数方法:利用级数公式可以计算&pi;的,比如莱布尼兹级数、欧拉级数和马刁尔级数等。这些级数公式的精度较高,但是计算量较大。 4. 积分方法:用积分公式来计算&pi;的,比如阿贝尔-普朗克公式和矩形公式等。这些方法精度较高,但是计算量也比较大。 此外,还有一些脑洞大开的估计方法,比如: 1. 用切片面积估计&pi;的:将一个圆形的切片放在一个正方形内,然后统计切片内部的面积占正方形面积的比例,以此来估算&pi;的。 2. 用抛物线估计&pi;的:将一个抛物线放在一个正方形内,然后统计抛物线内部的面积占正方形面积的比例,以此来估算&pi;的。 3. 用牛顿迭代法估计&pi;的:利用牛顿迭代法可以求出&pi;的,但是迭代的次数较多,计算量很大。 总的来说,计算&pi;的方法有很多种,每种方法都有其优缺点和适用范围,选择何种方法取决于计算的精度要求和计算的时间限制。
评论 71
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白晨并不是很能熬夜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值